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Introduction

One of the most mysterious philosophical questions about mathematics
is its relationship to reality. Most people would feel that such a rela-
tionship is “evident” as many developments in mathematics have been
inspired by the observation of natural phenomena, reaching as far to
the beginning as to the fundamental arithmetic equation 1+1 = 2. But
if we take into account that any mathematical statement is just a se-
quence of symbols, which is said to be true if it fulfills some rules which
are in their turn interpretations of another sequence of symbols, then
it is not clear why these should reflect any truth in the physical nature.
Many cunning arguments have been given for both point of views over
the time. We do not want to prosecute this philosophical question here,
but rather point out that all the subsequent work deals with aspects of
a very modern and deep “evidence”: the mirror symmetry.

Mirror symmetry deals with Calabi-Yau varieties which are compact
complex algebraic varieties1 X with the properties that H i(X,OX) = 0
for all i = 1, . . . , dimX−1 and the canonical class is trivial. The last
property is equivalent to the existence of a globally defined rational
(dimX)-form without zeros nor poles.

Manifolds of this type were first considered by E. Calabi, who, in the
50’s, conjectured that they should have a Ricci-flat metric (see [Cal]).
The conjecture was finally proven by S.-T. Yau in [Yau] in 1978.

The 1-dimensional Calabi-Yau varieties turn out to be the ellip-
tic curves, which had been studied long before and are now very well
known. A similar statement can be made about the 2-dimensional
Calabi-Yau varieties, which are commonly known as K3 surfaces.

3-dimensional Calabi-Yau varieties play an essential role for physi-
cists in string theory. In this theory the Minkowski space-time M3,1

known from special relativity theory is replaced by a 10-dimensional

1In general they are also defined to be ”as smooth as possible” for a given context.
While we will only consider smooth Calabi-Yau varieties, this class seems to be too
restricted for an explanation of mirror symmetry, so often in literature some mild
singularities, like Gorenstein terminal singularities, are allowed. For the important
3-dimensional Calabi-Yau varieties,however, these distinctions are irrelevant.
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6 Introduction

space that locally looks like M3,1 × V , where V is a 3-dimensional
complex Calabi-Yau variety (accounting for 6 real dimensions). V is
considered to be so small that it cannot be perceived at a macroscopic
level. 3-dimensional Calabi-Yau varieties are then used to construct
so-called supersymmetric conformal field theories (SCFT) (see [CK] for
more details). For some symmetry reasons in these constructions it
turns out that a SCFT associated with a Calabi-Yau variety V should
be equivalent to another one associated with some Calabi-Yau variety
V ′. The relationship between V and V ′ is called mirror symmetry. It
implies many striking connections between such a mirror pair. One of
those is that the Hodge diamond of V is equal to that of V ′ reflected by
an axis of angle 45◦ (hence the name of the symmetry; a more prosaic
point of view is stating that h1,1(V ) = h2,1(V ′) and viceversa).

However, given V , it is not clear how to find or construct V ′. Mirror
symmetry as such is not even a well-defined mathematical statement,
as in the definitions of the SCFTs mathematically non-defined objects,
such as the Feynman path integral, occur. On the other hand it predicts
many deep mathematical results, which have partially been verified and
proved.

One of the first possible mathematical explanations of mirror sym-
metry was given by Batyrev ([Bat]), who showed that an anticanonical
hypersurface Z of a toric Gorenstein Fano variety X∆ associated with
a reflexive polytope ∆, is a Calabi-Yau variety, though in general not
a smooth one. He further showed, that when Z̃ is a maximal projec-
tive non-discrepant partial (MPCP-) desingularization of Z and Z̃∗ an
analogously defined desingularization of an anticanonical hypersurface
of X∆∗ , where ∆∗ is the dual polytope of ∆, then Z̃ and Z̃∗ fulfill the
requirements on the hodge numbers implied by mirror theory (in all di-
mensions n for the generalized equation h1,1(V ) = hn−1,1(V )). So, the
mirror duality is in this case given by the duality operation on reflexive
polytopes.

Very recent ideas have related the explanation of mirror symmetry
of V to Lagrangian submanifolds of V (see [SYZ] and [Kon1]). If the
Calabi-Yau variety is defined over the reals then an important exam-
ple of a special Lagrangian submanifold is the set of real points. In
particular this applies to all toric constructions.

There is a long tradition to study real algebraic varieties. Solutions
to real polynomial equations were already constructed when one could
not yet write down such equations (many examples can be found in
Arabian textbooks). In higher dimensions, the topological description
of real algebraic varieties becomes a natural point of view, as algebraic
methods do not work as well as they do for complex varieties. In gen-
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eral, two tasks can be distinguished: Describe the homeomorphism type
of the varieties and, if applicable, the isotopy type of an embedding.
In practice, the second aspect is relevant for curves, as their homeo-
morphism type is relatively easy to determine, whereas for all other
real algebraic varieties the first aspect is already a tough problem. An
attempt to classify real projective algebraic varieties by dimension and
degree does not get all too far. Today, the isotopy classification of
nonsingular real plane projective curves is known up to degree 7 (and
large parts of degree 8), the degree 6 case being particularly famous for
being part of the 16th problem in the famous list presented by Hilbert
in his speech during a mathematical congress held in Paris in 1900 (see
[Hil]). The latter was solved by Gudkov in 1965 ([Gud]). The advances
in higher degrees were made possible by a new method introduced by
Viro (see [Vi1]), which works naturally also in higher dimensions. We
will use this method quite essentially in our work. The homeomorphism
type of smooth real surfaces in P3 are known up to degree 4. The last
step was added by Kharlamov in 1974 ([Kha]).

There exist results for various subclasses, defined by abstract prop-
erties, of real algebraic varieties. An important subclass in this context
is constituted by the real Calabi-Yau varieties. These are always ori-
entable. Real elliptic curves (1-dimensional Calabi-Yau varieties) can
easily be shown as consisting of either 0,1 or 2 circles. Real K3 sur-
faces (2-dimensional Calabi-Yau varieties) coincide with the smooth
real quartics in P3, this being the reason for an intimate connection
between this classification and the isotopy classification of nonsingular
real plane projective degree 6 curves. In dimension 3 the problem is still
wide open, it being not even clear whether the number of topological
types is finite or not.

It is the basic idea of this dissertation to shed some more light into
this area of research. We will make use of the mentioned method of
Viro to construct the real toric Calabi-Yau hypersurfaces of Batyrev’s
construction. This method gives an explicit topological model of the
hypersurface as cell complex. Desingularizations of the hypersurface in
X∆ are described by means of a unimodular triangulation of ∆∗. It can
locally be understood as the desingularization of a toric variety over
a face of ∆∗ (we call them real local toric Calabi-Yau varieties). So
we have a purely combinatoric description in convex geometry of the
resulting Calabi-Yau variety. We use this mainly for the calculation
of the Euler characteristic and Betti numbers. For this purpose it
proves useful to assume that the triangulation used in the method of
Viro is unimodular. Under this assumption we show that the Euler
characteristic is independent of all choices in the construction in the
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local as well as in the compact case. The same is true for the Betti
numbers in the compact case and in the locals case for dimensions ≤ 3.
For general local Calabi-Yau varieties a similar independency result
could only be proved for virtual Betti numbers.

But not only can convex geometry be used to derive topological
properties of the varieties, also the opposite direction is possible. So,
from the formula for the Euler characteristic we derive relations for
general lattice polytopes (in low dimensions) in the local case and for
reflexive 4-dimensional polytopes out of the compact case.

In order to compute cohomology groups with integral coefficients
we implemented a computer program which calculates these groups
for hypersurfaces constructed with the Viro method. When these are
smooth, they are already Calabi-Yau varieties. Unfortunately, these
examples are also the computationally most expensive ones.

In this work we come into touch with some further classes of real
algebraic varieties: A. Commessatti showed ([Com1]), that compact
smooth real rational surfaces are connected and can be either non-
orientable (of arbitrary type) or orientable with genus at most 1. We
will present surfaces which fulfill all properties but compactness, having
arbitrary genus. Compact smooth real rational algebraic varieties of
dimension 3 were investigated by J. Kollár (see [Kol0] - [Kol5]) by
means of a minimal model program.

Delaunay classified real structures on compact toric varieties and
determined their fixed point set in dimensions 2 and 3 ([Dly1]). The
number of such varieties is small. Again, missing compactness in our
examples leads to a much larger diversity (namely infinitely many) of
topological types.

This dissertation is divided into four chapters:

The first chapter is devoted to basic results in piecewise linear topo-
logy and convex geometry.

Piecewise linear topology is our natural setting for the topological
description of real toric varieties. Our main contribution consists in
the definition of a compactification P of a polyhedron P , in such a way
that P is a polytope whose face poset extends the face poset of P in
a natural way. This allows to handle non-compact toric varieties in a
similar way to compact ones.

Convex geometry is the language to be used for the combinatoric
description of any toric variety. We introduce notation and state neces-
sary results on lattices, lattice polytopes, reflexive polytopes and uni-
modular triangulations. The fact that the number of simplizes in a
unimodular triangulations of a lattice polytope does not depend on the
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particular choice of the triangulation will reflect in numerous indepen-
dency results throughout our work.

Chapter II gives background information on general and real toric
varieties for the reader who is not familiar with these concepts.

Toric varieties are normal algebraic varieties that contain the alge-
braic torus as open dense subset such that its action on itself extends
to the whole variety. They can be defined over any field. One of their
key features consists in a functorial relationship with certain objects of
convex geometry. Various abstract algebraic properties can be “trans-
lated” into the world of convex geometry (and viceversa), where the
objects are very concrete, easy to visualize and often more accessible to
calculations. Toric varieties cover some of the most important exam-
ples of algebraic varieties, but they are somehow “handicapped” by the
fact that they are always rational. This limitation can be overcome by
considering not only the varieties themselves but also their subvarieties.
In such a way, it is possible to obtain Calabi-Yau varieties (which are
never rational).

We put particular interest to the case where ∆ is a d-dimensional
rational polyhedron and X∆ the real toric variety associated with it.
Then X∆ is topologically obtained as the result of glueing of 2d copies
of ∆ along their faces. The compactification ∆ of ∆, described in
Chapter I, extends to X∆, resulting in a compact space X∆, where
∂X∆ is a smooth p.l. manifold.

To calculate Betti numbers of toric varieties we use two devices:

One is a result of V. Uma ([Uma]), which yields a representation of
the fundamental group of real toric varieties.

The other one are virtual Betti numbers βi. These are defined on
all real algebraic varieties by their property of being additive on dis-
joint unions and coinciding with the classical Betti numbers on smooth
compact real algebraic varieties. The virtual and the classical Euler
numbers always coincide. With βi((R∗)d) = (−1)d−i

(
d
i

)
the virtual

Betti numbers of a real toric variety X is easily determined by its
orbit decomposition and expressed in terms of its defining fan Σ as
βi(X) =

∑d−i
k=0(−1)d−i−k

(
d−k

i

)
#Σ(k).

In chapter III we deal with real local toric Calabi-Yau varieties.
These are non-compact toric varieties associated with a fan over a con-
vex polytope Θ with unimodular triangulation (see figure 1). Their
Euler characteristic can be calculated by using the orbit decomposi-
tion. In low dimensions d we get: For d = 2 and Θ = [0, n]: χ = 2− n,
for d = 3: χ = l(∂Θ)−4 and for d = 4: χ = 1

2
vol(Θ)+κ(Θ)−5l(Θ)+13,
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where κ(Θ) designates the number of edges in the triangulation (this
number depends only on Θ), and l(Θ) := #(Θ ∩ Z3).

Figure 1: The fan over Θ = [0, 4]

We show that the Euler characteristic and the virtual Betti numbers
are independent of the particular choice of the triangulation.

The number of boundary components in the compactification-with-
boundary is 2d−1−dim2 ∂Θ, where dim2 ∂Θ designates the dimension of
the F2 -subspace generated by the image of ∂Θ ∩ Zd−1, hence depends
only on the boundary of the polytope.

In dimension d = 2 this number amounts to 1 or 2. The surfaces
X are completely classified by their parameter n: If n is even, then
X ∼= Tn

2
−1 \{2 pts.}, whereas if n is odd, then X ∼= Tn−1

2
\{1 pt.}.

Hereby Tg designates the orientable surface of genus g.
For 3-dimensional varieties such a complete result is not achieved.

We are, however, able to calculate the integral (co-)homology groups
and show that the classical Betti numbers coincide with the virtual
Betti numbers and are independent of the triangulation. The Betti
numbers with integral coefficients depend in general on the triangula-
tion: In the first example of the figure below, H1

c (X,Z) ∼= Z3, in the
second H1

c (Y,Z) ∼= Z4 × Z/2Z.

The triangulations defining X (left) and Y (right)

We conjecture, that the topology of 3-dimensional real local Calabi-
Yau varieties is characterized by their fundamental group.
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In chapter IV we use Viro’s combinatorial patchworking method for
the construction of toric Calabi-Yau hypersurfaces.

In the first section we give an overview of the known topological
classification of real K3 surfaces: They consist of a union of spheres of
which one may have handles and are characterized by their number of
components and their Euler characteristic (with one exception to that
rule, as both S2 ∪ T2 and T1 ∪ T1 can be realized as real K3 surfaces).

In the second section we present Batyrev’s construction of Calabi-
Yau varieties: If ∆ is a reflexive polytope, then a generic Laurent poly-
nomial with Newton polytope ∆ defines a Calabi-Yau variety Z in X∆

(the toric variety associated ∆), possibly with singularities. Locally
around these singularities, Z looks like the toric variety associated with
a certain face of ∆∗, the dual polytope of ∆. Hence, a desingularization
can be described (locally) by means of a unimodular triangulation of
that face and the real local toric Calabi-Yau variety defined by it.

In the third section we present the patchworking theorem of Viro.
We will use a special case of it, which is called combinatorial patch-
working: To combinatorial data consisting of a lattice polytope ∆, a
lattice triangulation of it and a sign function on the vertices of the tri-
angulation it constructs a topological model of a hypersurface in X∆.
The various choices possible give to a certain amount control over the
topological properties of the hypersurface. As the hypersurface is then
given a natural structure as cell complex it is possible (at least in the-
ory) to calculate the homology groups straightaway. We develop and
implement an algorithm to do these calculations on a computer (the
commented source code is available at ???) and explain the most in-
teresting part of it, namely a combinatorial formula for the induced
orientation of a cell on its boundaries, in the forth section.

In the fifth section we deduce numerical invariants of Calabi-Yau va-
rieties constructed by using the combined methods of Batyrev and Viro.
We show that the Euler characteristic is independent of all choices if a
unimodular triangulation is used for Viro’s method whereas the Betti
numbers are independent of the resolution if the singular hypersurface
is fixed. For K3 surfaces the Euler characteristic turns out to be always
-16, which allows only two topologically different surfaces, one with one
component and another one with two components. A similar behaviour
(1 or 2 components) is also observed in all examples of higher dimen-
sion (in the sixth section), so we conjecture that this must be a general
principle valid for all dimensions.

For 3-dimensional Calabi-Yau varieties the Euler characteristic must
be always zero, so with our formula and reversing the point of view
we deduce a formula relating combinatorial properties of a reflexive
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4-polytope and its dual:

−15f4,4 + 14f3,4 + 7f3,3 − 12f2,4 − f2,3 − 3f2,2 + f1,4 + 4f1,3 + 2f1,2 + f1,1

=
∑

F∈∆(2)

l(∂F )(2− l(F ∗))−
∑

Θ∈∆(1)

vol(Θ)(3− l(∂Θ∗)),

where the fi,j designate the (well-defined) number of i-dimensional sim-
plizes contained in the interior of the j-dimensional faces in any uni-
modular triangulation (assuming that it exists).

In the last section we present the results of our computer exper-
iments on Viro hypersurfaces. We make the following observations:
Where the cohomology groups can be calculated it is already deter-
mined by the number of components and only 2-torsion occurs, reflect-
ing an analogous property of real local toric Calabi-Yau varieties. The
number of components is bounded by 2, if the triangulation is unimod-
ular (otherwise it can be much higher).
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I Preliminaries

1.1 Piecewise Linear Topology

1.1.1 Definition: Let A,B ⊂ Rd. The join of A and B is defined as

←→
AB := {ta+ (1− t)b | a ∈ A, b ∈ B, 0 ≤ t ≤ 1}.

For a one-point set, we will write a instead of {a}.

1.1.2 Proposition: The “join” operation is associative and commu-
tative.

Proof: See for instance [RS], Prop 2.1. �

1.1.3 Definition: A set P ⊂ Rd is called a generalized polyhedron2 if
it looks locally like a cone over a compact set, that is for all x ∈ P there
is a compact set L, x /∈ L, such that xL is a (closed) neighbourhood of
x in P .

Examples:

a) Let L ⊂ Rd be compact, v ∈ Rd, v /∈ L. Then C := {v+t(x−v)|x ∈
L, t ≥ 0} is called the cone generated by L, with vertex v.

b) {x2 + y2 ≤ 1} ⊂ R2.

c) {x2 + y2 < 1} ⊂ R2.

d) {x2 + y2 < 1} ∪ {(1, 0)} ⊂ R2.

It is easy to verify that a) and c) are generalized polyhedra, whereas b)
and d) are not.

2In [RS] it is just called polyhedron. It is a natural object in p.l. topology. We
will use the term instead for a more restricted class of objects which arises naturally
in convex geometry.

13



14 Chapter I. Preliminaries

1.1.4 Definition: A map F : P → P ′ between two generalized poly-
hedra is called affine linear if for all x, y ∈ P

f(tx+ (1− t)y) = tf(x) + (1− t)f(y)

for all 0 ≤ t ≤ 1 such that tx+ (1− t)y ∈ P .

1.1.5 Definition: A map f : P → P ′ between two generalized poly-
hedra is called piecewise linear (p.l.) if the graph of f is again a gener-
alized polyhedron. We say, that P and P ′ are piecewiese linear homeo-
morphic, if there are piecewise linear maps f : P → P ′ and g : P ′ → P
with f ◦ g = idP ′, g ◦ f = idP .

Examples:

a) Affine linear maps are piecewise linear.

b) The map f : [0, 1] → R, f(x) = 0 if 0 ≤ x ≤ 1
2

and f(x) = 2x − 1
otherwise, is piecewise linear.

c) Let I = {(a, a) | 0 ≤ a ≤ 1}, p = (0, 2). The projection of I from p
on the x1-axis is not piecewise linear as the graph is not a generalized
polyhedron (x1(a) = a

2−a
, which gives a part of a hyperbola).

Remark: Examples a) and b) are typical in the sense that piecewise
linear maps will turn out always to be linear on some appropriate pieces,
as their name suggests.

1.1.6 Definition: (a) Let P ⊂ Rd be the intersection of a finite set of
affine halfspaces:

P =
⋂

i∈I

{αi ≥ ai},

where I is a finite set, the αi, i ∈ I, are linear forms and ai, i ∈ I, real
numbers. We call P a polyhedron. We call P a pointed polyhedron if it
is nonempty and has a vertex, that is a point x ∈ P such that

{x} = P ∩
⋂

j∈J

{αj = aj}

for some subset J ⊂ I. Any nonempty set which has the form P∩⋂
j∈J{αj = aj} for some J ⊂ I is called face of P . A maximal proper

face is called a facet.
If P is bounded, then we call it a polytope.
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We designate by Aff(P ) the smallest affine subspace of Rd contain-
ing P , and by Lin(P ) the linear subspace of Rd parallel to Aff(P ).

The dimension of P is the dimension of Aff(P ), or equivalently of
Lin(P ).

Remark: Polytopes and pointed polyhedra are in fact not very dif-
ferent objects, as for any pointed polyhedron it is possible to get a
polytope by just adding one more affine inequality. The additional in-
equality can even be chosen such that in the combinatorics of the faces
it results in a natural “addition” of faces. We will make use of such
canonical “compactifications” later on.

The faces of a polyhedron P depend only on P and not on the set of
inequalities actually used to define P . This follows from the fact that
we can not only throw out useless inequalities from the definition of P
(this is quite obvious), but also eliminate the corresponding equality in
the definition of any face F . To show this we can assume without loss
of generality that P is fulldimensional and that no linear form (defined
up to a multiple) occurs twice in the definition of P . Then the assertion
is a consequence of the following:

1.1.7 Proposition: Let

P = {α ≥ a} ∩
⋂

i∈I

{αi ≥ ai}

be a polyhedron (where I is a finite set) and F = P ∩{α = a}. Assume
that P is fulldimensional and α 6= λαi for all λ ≥ 0, i ∈ I.

The following statements are equivalent:

(i) The inequality α ≥ a is superfluous for the definition of P , that is
P =

⋂
i∈I{αi ≥ ai}.

(ii) For all x ∈ F there is an i ∈ I such that αi(x) = ai.

(iii) There is an i ∈ I such that αi|F = ai.

(iv) dimF ≤ dimP − 2.

(v) For any face G of P we have G ∩ F = G ∩
⋂

αi|F≡ai
{αi = ai}.

Proof: i) ⇒ ii): Let x ∈ F . Assume that αi(x) > ai for all i ∈ I.
As I is a finite set, there exists a small neighbourhood U of x, such
that αi(x

′) > ai for all x′ ∈ U, i ∈ I. Be y ∈ Rd with α(y) < a (such
a y must exist, since by assumption α is not the zero-function). Set
yt := x+ t(y − x) for t > 0. For t small enough, yt ∈ U , so αi(yt) > ai

for all i ∈ I, but α(yt) = tα(y) < a, in contradiction to the assumption
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that α ≥ a is a superfluous inequality. Thus there must be an i ∈ I
with αi(x) = ai.

ii)⇒ iii): Let x be any point in the interior of F (e.g. the barycen-
ter of a basis of the affine space spanned by F ). By assumption there
is an i ∈ I such that αi(x) = ai. If there is a point y ∈ F , such that
αi(y) > ai, then for yt := x+ t(y− x) we have αi(yt) < ai for all t < 0,
so yt /∈ P , but for |t| small enough yt ∈ F , hence a contradiction. So
αi(y) = ai for all y ∈ F .

iii) ⇒ iv): Let V := {α = a}, V ′ := {αi = ai}, where αi|F = ai.
αi is not constant on V , otherwise it would be a multiple of α. As we
have excluded the possibility of nonnegative multiples, it would be a
negative multiple. But then P ⊂ {α ≥ a} ∩ {−α ∩ −a} = {α = a},
and P would not be fulldimensional. So this is excluded as well. As
a consequence we have V ∩ V ′ $ V and from F ⊂ V ∩ V ′ follows
dimF ≤ dim(V ∩ V ′) = dimV − 1 = dimP − 2.

iv) ⇒ i): Let V := {α = a} and W be the affine space spanned
by F . Let y ∈ Rd with α(y) < a. Assume that for all x ∈ V \F the
line through x and y never meets P . Then P is contained in the affine
space spanned by F and y, which has dimension dimF +1 ≤ dimP−1,
hence a contradiction.

So there is an x ∈ V \F such that the line through x and y meets
P , say in y′. As x 6= P there is an i ∈ I with αi(x) < ai. On the other
hand α(y′) ≥ ai, so αi(y) < ai. So the inequality α = a is superfluous
for the definition of P .

i) ⇒ v): Let
J := {i ∈ I | αi|F ≡ ai}.

One inclusion is clear. For the other inclusion we have to show that
any x ∈ G ∩

⋂
j∈J{αj = aj} is also contained in F ∩ G. Assume that

it is not, so α(x) > a. Let y ∈ F such that αk(y) > 0 for all k ∈ I \J
(by definition for each k ∈ I\J a yk ∈ F with αk(yk) > ak exists, then
take e.g. y := 1

#(I\J)

∑
k∈I\J yk). Let W be the line through x and y,

then there is a point y′ ∈ W close to x such that αk(y
′) > ak for all

k ∈ I \J , but α(y′) < a. So y′ /∈ P , therefore there must be an i ∈ I
such that αi(y

′) < ai. By our construction we must have i ∈ J . But
then αi(y) = ai = αi(x), so also αi(y

′) = ai which is a contradiction,
whence the claim.

v): ⇒ iii) Taking G = P we have F = P∩F = P∩
⋂

j∈J{αj = aj},
where J is defined as before. As F 6= P , J must be nonempty, so the
required condition is fulfilled. �

The proposition shows that we can define all faces without using
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superfluous linear forms. We will henceforth assume that all polyhedra
are fulldimensional (where this makes sense) and that no superfluous
inequalities occur in their definition.

1.1.8 Proposition: (i) A polyhedron is a convex generalized polyhe-
dron.

(ii) A polytope is a pointed polyhedron.

(iii) The faces of a polyhedron (pointed polyhedron resp. polytope) are
again polyhedra (pointed polyhedra resp. polytopes).

(iv) The intersection of two faces is again a face: of the polyhedron as
well as of the intersecting faces.

(v) A face is a facet if and only if it has codimension 1.

(vi) Every polyhedron P with P 6= Aff(P ) has a facet.

Proof:

(i) Let x ∈ P =
⋂s

i=1{αi ≥ ai} and ε := min{αi(x) | αi(x) 6= 0} > 0.

Then the closed ball Bε(x) is a cone
←−−−−−−−−→
x(∂Bε(x) ∩ P ). Convexity

follows from the fact, that if α(x) ≥ 0 and α(y) ≥ 0 for a linear
form α, then also α(tx + (1 − t)y) = tα(x) + (1 − t)α(y) ≥ 0 (for
0 ≤ t ≤ 1).

(ii) Any minimal face is equal to the affine space defined by it (as there
are no further restrictions by inequalities). As it is bounded, it must
be 0-dimensional, hence a point.

(iii) This is immediate for polytopes and polyhedra. If P is a pointed
polyhedron it remains to show that every face has a vertex. So let
F be a face of P . Let V be a minimal (nonempty) face contained in
F . Then V is an affine subspace of Rd. Now let x be a vertex of P
and x′ ∈ V . V +(x−x′) fulfills the same equalities and inequalities
as those defining x, as for any y ∈ V and α linear form from the
definition of P , α(y+(x−x′)) = α(y)−α(x′)+α(x) = α(x). Thus
V − (x− x′) ⊂ {x}, which is only possible if V = {x′}.

(iv) This follows from the definition.

(v) We first show the “only if”-direction: Let P be a polyhedron and F
a facet. Then there is at least one equation α = a from the definition
of F , such that P ∩{α = a} 6= P . On the other hand, F ⊂ P ∩{α =
a}, so by the maximality of F we have F = P ∩ {α = a}. So we
have dimF ≤ dimP − 1. By proposition 1.1.7 dimF ≥ dimP − 1,
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so dimF = dimP − 1.
For the other direction: Let F be a face of codimension one and
F ′ the maximal proper face of P containing F . Then also F is of
codimension one (otherwise we would have F = P ), but then F is
a face of F ′ with the same dimension, hence F = F ′.

(vi) As P 6= Aff(P ), P is defined by at least one inequality, which defines
a facet in the obvious way.

�

1.1.9 Corollary: The set of faces of a pointed polyhedron P is par-
tially ordered by inclusion and has the property, that every maximal
chain has length equal to dimP + 1 and contains exactly one face of
dimension k for every 0 ≤ k ≤ dimP .

Proof: This is an immediate consequence of the previous proposition.
�

1.1.10 Definition: A combinatorial map between two polyhedra is an
order-preserving map between the sets of faces. We call two polyhe-
dra combinatorially equivalent if there is an order-preserving bijection
between the sets of faces.

1.1.11 Definition: A polytope σ is called a simplex, if it is defined by
n+1 not superfluous inequalities, where n = dim σ. The d-dimensional
standard simplex is defined as σ(d) := {(x1, . . . , xd) ∈ Rd | xi ≥ 0 ∀i =
1, . . . , n,−

∑n
i=1 xi ≥ −1}.

In the following, we list some well-known properties of simplizes:

1.1.12 Proposition: Let σ be a polytope. The following statements
are equivalent:

(i) σ is a d-dimensional simplex.

(ii) σ is the convex hull of n + 1 points not contained in any (n − 1)-
dimensional affine space.

(iii) σ is the repeated join of d+ 1 points not contained in any (d− 1)-
dimensional affine space.

(iv) σ is linearly equivalent to the standard simplex σ(d), that is, σ can
be transformed into σ(d) by an affine linear map and viceversa.

(v) σ is a polytope combinatorially equivalent to σ(d).

(vi) Any two faces of σ of dimension ≥ 1 have nonempty intersection.
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(vii) σ has
(

d
k

)
faces of dimension k, k = 1, . . . d.

Proof: The stated facts can be regarded as “common knowledge”, thus
we leave it to the interested reader to carry out the technical details of
the proof if he wishes to do so. �

1.1.13 Definition: A polyhedral complex K is a finite set of polyhedra,
such that:

(i) For all P, P ′ ∈ K, the intersection P ∩ P ′ is either empty or a
common face of both P and P ′,

(ii) for all P ∈ K: If F is a face of P , then F ∈ K.

If all the polyhedra are simplizes, then K is called a simplicial complex.
|K| :=

⋃
P∈K P is called the underlying generalized polyhedron or the

realization of K.
If P is a polyhedron, then we call K(P ) := {F | F is a face of P}

the associated complex to P . We will sometimes denote the associated
complex also by P , when no misunderstanding is possible.

Ṗ := {F | F is a proper face of P} is called the frontier of P . We
often write ∂P for |Ṗ |, although this might be misleading when P is
not fulldimensional.

The interior of P is defined as the generalized polyhedron Int(P ) :=
P \∂P .

1.1.14 Definition: We call a map f : K → K ′ of polyhedral complexes
a combinatorial map if it preserves the partial ordering (i.e. P ⊂ P ′ ⇒
f(P ) ⊂ f(P ′)). If f is surjective, then K is called a subdivision of
K ′. Two polyhedral complexes are combinatorially equivalent, if there
are combinatorial maps f : K → K ′ and g : K ′ → K with g ◦ f =
idK , f ◦ g = idK ′.

There is a strong relationship between generalized polyhedra and
simplicial complexes. Of course, every simplicial complex is a general-
ized polyhedron. But also the other direction “almost” holds: Every
generalized polyhedron locally looks like a simplicial complex.

1.1.15 Proposition: a) A subset P ⊂ Rd is a generalized polyhedron
if and only if it is a locally finite union of simplizes. If P is com-
pact, the set of simplizes can be chosen to be finite, and P is the
underlying generalized polyhedron of a simplicial complex.

b) A map f : P → P ′ between generalized polyhedra is piecewise
linear if and only if f is continuous and P can be written as a
locally finite union of simplizes, such that f is affine linear on each
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simplex. Again, if P is compact, the set of simplizes can be chosen
to be finite.

Proof: See [Hud], Chapter III, Theorem 3.6. �

1.1.16 Definition: Let P be a polytope with vertices v1, . . . , vs. Then

P̂ :=
1

s

s∑

i=1

vi

is the barycenter of P .

1.1.17 Definition: Let K = {Pi | i ∈ I} be a polyhedral complex
consisting of polytopes. Then we call the following simplicial complex
K̃ a barycentric subdivision of K:

The k-simplizes of K̃ are defined as the repeated join of all
←−−−−−→
P̂i0 . . . P̂ik

such that Pi0 ⊂ . . . ⊂ Pik .

Remark: We can think of K̃ as being inductively constructed as fol-
lows: The 0-simplizes are taken to be the 0-dimensional polytopes in
K. Then, assuming to have constructed the barycentric subdivision
K̃≤k of the k-skeleton of K (the subset of polytopes with dimension
≤ k), we define the barycentric subdivision of the (k + 1)-skeleton as

K̃≤k+1 := K̃≤k ∪ {
←→
P̂iσ | σ ∈ K̃≤k, σ ⊂ ∂Pi},

where the Pi are the (k + 1)-dimensional polytopes of K.
It is not difficult to verify that the underlying generalized polyhe-

dron of K̃ is equal to that of K and that for any two combinatorially
equivalent polyhedral complexes also their barycentric subdivions are
combinatorially equivalent by a canonical bijection.

1.1.18 Theorem: Let P be a pointed polyhedron. Then there are a
linear form α and a real number a, such that

P := P ∩ {α ≥ a}

is a polytope and

f :K(P )→ K(P )\K(G)

F 7→ F ∩ {α ≥ a}

is an order-preserving bijection, where G = P ∩ {α = a}.
We call P a closure of P and G a closing face.
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Proof: Let v be a vertex of P and
←→
vL a cone neighbourhood of v

in P . Let C be the cone generated by v and L. As P is convex,
P ⊂ C. Without loss of generality, we can assume that v is the origin
and {v} = P ∩

⋂
i∈I{αi = 0}. Set α :=

∑
i∈I αi. Then P ⊂ {α ≥ 0}

and P ∩ {α = 0} = v. As P and C are identical locally around v, the
same is valid for C. We claim, that for all n ∈ N, C ∩ {α ≤ n} is
bounded. Indeed, let t := dist(v, L) > 0 and N be a bound for L. Let
x ∈ C ∩ {α ≤ n}. By definition, x = sx′ for some s ≥ 0 and x′ ∈ L.
From

n ≥ α(x) = α(sx′) = sα(x′) ≥ st

we get that s ≤ n
t
<∞. So n

t
N is a bound for C ∩ {α ≤ n} and hence

also for P ∩ {α ≤ n}.
Let n be large enough, such that P ∩{α ≤ n} contains all bounded

faces of P (this is possible, since there are only finitely many). Define

P := P ∩ {α ≤ n+ 1} = P ∩ {−α ≥ −n− 1}.

We have already shown that it is a polytope. It remains to show that
the map f is indeed an order-preserving bijection.

It is immediate that f preserves the ordering. Furthermore, we
note that f preserves the dimension. Indeed, if F is a face of P and
dim(F ∩ {α ≤ n + 1} < dimF then we must have F ⊂ {α ≥ n + 1}.
But this is impossible, since F has a vertex v, and we have α(v) ≤ n
by construction.

We show now that f is injective: This is surely true for the vertices,
as they are mapped on themselves. If F, F ′ are faces of higher dimension
with f(F ) = f(F ′), then, by induction, they have the same (sub-)faces.
But as they have the same dimension, they must be equal.

For surjectivity, let F be a face of P , F $ G. So

F = P ∩ {α ≤ n+ 1} ∩
⋃

j∈J

{αj = aj},

where the αj ≥ aj are from the definition of P . Since F $ G =
P ∩ {α = n + 1}, we have, that α 6= αj for all j ∈ J . But then
F = P ∩

⋃
j∈J{αj = aj} is a face of P and clearly f(F ) = F , hence the

assertion, which concludes the proof. �

1.1.19 Theorem: The map

g :{F | F is an unbounded face of P} → K(G)

F 7→ F ∩ {α = n+ 1}

is an order-preserving bijection.
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Proof: First we note that dim g(F ) = dimF − 1, as α ≥ n + 1 is not
a superfluous inequality for the definition of f(F ) = F ∩ {α ≤ n + 1}.
Furthermore, g is clearly order-preserving. Now let F, F ′ be unbounded
faces with g(F ) = g(F ′) and x ∈ Int(g(F )). Then x ∈ Int(F ) (for if
x is contained in some proper face H of F , then also in g(H) which
is a proper face of g(F )) and for the same reason x ∈ Int(F ′). So
F ⊂ F ′ (or F ′ ⊂ F ), but as they have the same dimension, we must
have F = F ′ and g is injective.

For surjectivity, let F be a face of G, F = P ∩ {α = n + 1} ∩⋂
j∈J{αj = aj}, where α 6= αj for all j ∈ J . Then the polyhedron

H := P∩
⋂

j∈J{αj = aj} is a face of P with g(H) = F , completing the
proof. �

1.1.20 Definition: Let K be a polyhedral complex. Then we call

χ(K) :=
∑

P∈K

(−1)dimP

the Euler characteristic ofK. IfX is the underlying generalized polyhe-
dron of a polyhedral complex K, then we define the Euler characteristic
of X as

χ(X) := χ(K).

1.1.21 Proposition: a) The above defined Euler characteristic of an
underlying polyhedron is well defined, so for K,K ′ polytopal com-
plexes with |K| = |K ′| we have χ(K) = χ(K ′).

b) The Euler characteristic is additive, that is for two polyhedra X,X ′

χ(X ∪X ′) = χ(X) + χ(X ′)− χ(X ∩X ′).

Proof: These are well-known facts about the Euler characteristic. �

1.1.22 Proposition: The Euler characteristic of a pointed polyhedron
P is 1 if P is bounded, and 0 if it is unbounded.

Proof: It is well known that the Euler characteristic of a compact
polytope is 1. If P is unbounded, then we can consider it (at least
combinatorially) as P \G, where P is a closure of P and G a closing
face. So χ(P ) = χ(P )− χ(G) = 1− 1 = 0. �
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1.1.23 Corollary: If P, P ′ are two combinatorially equivalent pointed
polyhedra then also their closures P and P ′ as well as their respective
closing faces G and G′ are combinatorially equivalent.

Proof: As the Euler characteristic is clearly a combinatorial invariant,
the set of unbounded faces of P is mapped to the set of unbounded
faces of P ′ by the combinatorial equivalence mapping P to P ′. The
assertion now follows straightforwardly by combining the equivalences
f and g in the theorems 1.1.18 and 1.1.19. �

1.1.24 Proposition: Let P be a pointed polyhedron, Ku(P ) the set
of its unbounded faces. Let Q be the compact polytope “between two
closures of P”: If α is a linear form for P as in theorem 1.1.18, then
Q := P ∩ {α ≥ n} ∩ {α ≤ n+ 1} for some n big enough.

Then there is an order-preserving bijection f between Ku(P ) ×
{1, 1′, 2} and K(Q) given by

f(F, 1) = F ∩ {α = n}

f(F, 1′) = F ∩ {α = n + 1}

f(F, 2) =
←−−−−−−−−→
f(F, 1)f(F, 1′),

where we set (F, a) < (F, b) if b = 2 and a ∈ {1, 1′}.

Proof: We have already seen the order-preserving bijections between
Ku(P ) × {1} and the associated complex of P ∩ {α = n} as well as
between Ku(P )× {1′} and the associated complex of P ∩ {α = n+ 1}.
This is already enough to see injectivity and order-preservation of the
whole function f . It remains to show surjectivity: Let F be a face of Q,
f $ {α = n}∪{α = n+1}. Let H be the smallest face of P containing
F . Then, by a repetition of arguments used similarly before (the main
fact being that dimF = dimH), F = H ∩ {α ≥ n} ∩ {α ≤ n + 1}. �

1.1.25 Corollary: If P, P ′ are combinatorially equivalent pointed poly-
hedra, Q,Q′ defined as above, then alsoQ,Q′ are combinatorially equiv-
alent.

1.1.26 Proposition: Let P, P ′ be pointed polyhedra and f c : P → P ′

a combinatorial equivalence. Then there is a piecewise linear equiv-
alence f : P → P ′ respecting the combinatorial equivalence, that is,
f(F ) = f c(F ) for all faces F of P .
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Proof:

a) We first consider the case that P, P ′ are compact: Let K̃, K̃ ′ de-
signate the barycentric subdivions of P and P ′, respectively. As
P and P ′ are combinatorially equivalent, we know that there is
an order-preserving bijection f̃ : K̃ → K̃ ′. Define f : P → P ′

to be the piecewise linear map whose restriction on any simplex
←−−−−−→
P̂i0 . . . P̂ik ∈ K̃ is given by the (unique) affine linear map that maps

all P̂ij to f̃(P̂ij ). As the inverse of f can be constructed in the same
way (interchanging the role of P and P ′), f is a piecewise-linear
equivalence.

b) Now consider the case, P and P ′ are unbounded: Let α, α′ designate
linear forms for P, P ′ as in theorem 1.1.18, and P0 := P ∩ {α ≤ n}
and P ′

0 := P ′ ∩ {α ≤ n} closures of P and P ′ respectively. Then
define Pi := P ∩{α ≥ n+ i− 1}∩ {α ≤ n+ i} and P ′

i := P ′∩ {α ≥
n+ i− 1} ∩ {α ≤ n+ i} for all i ∈ N, i ≥ 1. By Proposition 1.1.24
Pi and P ′

i are combinatorially equivalent for all i, moreover we can
assume that on Pi ∩ Pi+1 the two equivalences coincide. So if we
construct the piecewise linear equivalences between Pi and P ′

i as in
proposition part a), these equivalences coincide on Pi ∩ Pi+1 for all
i ∈ N. So we can put the maps together, which yields the required
piecewise linear map P → P ′.

�

1.1.27 Theorem: Let P be a pointed polyhedron, P its closure and
G its closing face. Then there is a p.l. equivalence f ′ : P → P \G
respecting the combinatorial equivalence f from theorem 1.1.18, that
is f ′(F ) = f(F ) for all faces F of P .

Proof: The proof is very similar to the proof of the previous proposi-
tion. We use the same notation and define the Pi in the same way as
there. We can assume that P = P ∩ {α ≤ n + 1}. Let ai :=

∑i
j=1 2−i

for i ∈ N (thereby a0 = 0). Then we define P ′
0 = P0 and for i ≥ 1

P ′
i := P ∩ {αi ≥ ai−1} ∩ {α ≤ ai}.

As in the previous theorem Pi and P ′
i are combinatorially and thus p.l.

equivalent and we can put the p.l. equivalences together to form a p.l.
map f : P → P . By construction the image of this map is P\G, which
concludes the proof. �

Now we want to define closures of polyhedral complexes analogously
to the closure of a single pointed polyhedron. There is no natural way to



1.1 Piecewise Linear Topology 25

do this for arbitrary polyhedral complexes, but if the complex consists
of copies of one single pointed polyhedron P which are glued along their
faces, then the closure of P induces immediately a natural closure of
the whole complex.

So, from now on we will deal only with the following situation:
Let P be a pointed polyhedron and I = {1, . . . , r} a finite set. For

each facet F shall be given a function gF : I → I with the property

gF (i) = j ⇐⇒ gF (j) = i

(in other words, g2 = id). Let K be the polyhedral complex consisting
of all equivalence classes of K(P ) × I under the following equivalence
relation:

For faces F, F ′ ∈ K(P )

(F, i) ∼ (F ′, j)⇔F = F ′ and there is a facet F̂ with F ⊂ F̂

such that gF̂ (i) = j.

1.1.28 Definition: We define the compactification K of K as the fol-
lowing complex: K consists of all equivalence classes of K(P )×I under
the same type of equivalence relation as before where we additionally
set gG = id, where G is the closing facet of P .

If X is the realization of K then we define X to be the realization
of K.

Remark: We prefer the word “compactification” to “closure” here,
because in the context of manifolds, the word “closed” has a slightly
different meaning (compact and without boundary) from what is usual.

Remark: The complex K is described only as abstract polyhedral
complex, but it can be shown (see [RS]) that every such complex has a
realization in Rd for some d.

Example: Let P = (R≥0)
2 as shown in figure 1.2. Multiplication with

(±1,±1) gives 4 copies P (++), P (+−), P (−+) and P (−−), whose union,
which also is a glueing, is R2. Designating the intersection of P with
the x-axis with X, that with the y-axis with Y , we can describe the
glueing with the function g given as

gX(++) = +− gX(+−) = ++ gX(−+) = −− gX(−−) = −+

gY (++) = −+ gY (+−) = −−gY (−+) = ++ gY (−−) = +−
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(compare also figure 1.3). P is combinatorially equivalent and hence
p.l. equivalent to a triangle with one facet removed. So, we identify P
with the upper right triangle in figure 1.3 without the dotted line G.
The triangle together with the dotted line is P . The induced glueing
(defined in the above notation by setting gG ≡ 1) additionally glues
only the points X ∩G and Y ∩G, as well as their copies, as shown in
the picture. So, the result is the p.l. 2-ball with a p.l. circle as boundary.
The boundary is the result of the glueing of the copies of G.

Figure 1.2: The positive orthant P

Figure 1.3: The positive orthant P
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1.1.29 Definition: Let X be a topological space. A co-ordinate map
is a pair (f, P ), where P is a polyhedron and f : P → X is a homeomor-
phism onto its image. Two co-ordinate maps (f, P ), (g,Q) are called
compatible if either f(P )∩g(Q) = ∅ or there is a co-ordinate map (h,R)
such that h(R) = f(P )∩ g(Q) and f−1 ◦ h, g−1 ◦ h are piecewise linear
maps.

A piecewise linear atlas on X is a set A of co-ordinate maps on X
satisfying the following properties:

(i) Any two (f, P ), (g,Q) ∈ A are compatible,

(ii) For all x ∈ X there is a (f, P ) ∈ A such that f(P ) is a neighbour-
hood of x in X.

(iii) A is maximal, that is if (f, P ) is a co-ordinate map compatible to
all (g,Q) ∈ A, then (f, P ) ∈ A.

A PL-manifold (with or without boundary) of dimension n is a d-
dimensional topological manifold (with or without boundary) with a
p.l. atlas.

A map F : X → Y between PL-manifolds is called a p.l. map if for
all (f, P ) ∈ A, (g,Q) ∈ B, where A,B are the p.l. structures of X and
Y respectively, either F ◦ f(P )∩ g(Q) = ∅ or there is a coordinate map
(h,R) for Y such that h(R) = F ◦ f(P ) ∩ g(Q) and g−1 ◦ h is a p.l.
map. X, Y are p.l. homeomorphic if there are p.l. maps F : X → Y ,
G : Y → X with F ◦G = idY , G ◦ F = idX .

We define the notions of boundary and interior of a PL-manifold as
those of the underlying topological manifold. We recall that a mani-
fold (p.l. or topological) is called closed if it is compact and has no
boundary.

Remark: In short, a p.l. manifold is a topological manifold X whose
transition maps are piecewise linear maps. This is equivalent to asking
that there is a triangulation on X (a homeomorphism from a simplicial
complex) such that the link of each vertex of the triangulation is sim-
plicially isomorphic to a p.l. sphere (i.e. there is a subdivision of the
link combinatorially equivalent to a subdivision of the sphere).

It is a natural question whether there is any difference between
topological and p.l. manifolds. This question and other similar ones
occupied topologists for over one half of a century. The answer involves
many deep results and complicated methods. We will briefly expose
the subject here and refer to [Rud] for a more detailed exposition.

The first question that arose in this context (around 1910) was
whether two simplicial complexes which are homeomorphic must also
be simplicially isomorphic. At first no counterexamples could be found,
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so it was conjectured to be true and got the name “Hauptvermutung
der kombinatorischen Geometrie” or just “Hauptvermutung”. In 1961
J. Milnor found a 6-dimensional counterexample ([Mil]). This example
was not a manifold, though, so the Hauptvermutung was renewed to
hold for triangulated manifolds. Smale showed that the Hauptvermu-
tung is true for all n-spheres provided n 6= 4, 5, 7 (see [Sma]). A weaker
version was found to hold on all spheres. The Hauptvermutung for
manifolds was finally disproved by J. Kirby and L. Siebenmann when
they classified p.l. structures on topological manifolds of dimension at
least 5 ([KS]) (a p.l. structure is a certain equivalence class of p.l.
atlases, slightly weaker than p.l. isomorphism).

In order to give a complete picture of what happens on manifolds
of various dimensions we consider also the third category of manifolds,
namely differentiable (or smooth) manifolds, especially as nonsingular
real algebraic varieties belong to that category:

For dimensions up to 3 there is no difference between
topological, p.l. and differentiable manifolds. For dimensions
≤ 2 this was shown by Papakyriakopoulos ([Pap]), for dimension 3 by
E. Moise ([Moi]). For topological manifolds X of dimension ≥ 5 the
Kirby-Siebenmann classification states that there is an obstruction in
H4(X,Z) to the existence of p.l. structures. If that obstruction van-
ishes, the p.l. structures are classified by H3(X,Z), so in particular
there are only finitely many. The classifying space for p.l. structures is
an Eilenberg-MacLane space, whereas the classifying space for differen-
tiable structures has many nontrivial homotopy groups. In dimensions
4 to 6 PL-manifolds and differentiable manifolds coincide, but from di-
mensions 7 on, one can roughly say, that the concept of PL-manifolds
is “close” to that of topological manifolds, whereas differentiable man-
ifolds differ a lot (famous are the so-called “exotic 7-spheres” found
also by Milnor). Topological 4-folds are “wild”, as there are exam-
ples, which admit infinitely many p.l. structures (and for many other
reasons as well). Finally, a further difference between topological and
differentiable manifolds is the fact that the latter ones can always be
triangulated, whereas it is an open problem if the first ones can be (in
dimension 4 there is a counterexample).

1.1.30 Proposition: If X is a p.l. manifold realized by glueing of
copies of a polyhedron ∆ as described above, then X and ∂X are p.l.
manifolds, which are essentially unique as topological and PL-manifolds
(i.e. if Y is a compact topological manifold with Y \∂Y ∼= X, then Y
is p.l. homeomorphic to X and ∂Y to ∂X).

Proof: If Y is a compact manifold with Y \∂Y ∼= X, then the poly-
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hedral subdivision on X given by the copies of ∆ induces a polyhedral
subdivision on Y and ∂Y whose combinatorial structure is already de-
fined by the subdivision of X. This shows uniqueness.

Let x ∈ ∂X be a point and G a polytope of the subdivision such
that x ∈ Int(G). Then G is the closing face of some face F of ∆ and
the link of x is combinatorially equivalent to the link of any inner point
of F . As X is a PL-manifold, hence so is ∂X and X. �

Remark: The uniqueness of X does not necessarily hold in the cat-
egory of differentiable manifolds: Milnor ([Mil]) presented an example
of two 8-dimensional manifolds whose interior are diffeomorphic but
whose boundaries are not.

1.2 Lattice Polytopes and Triangulations

This section is devoted to the concepts and tools around lattice poly-
topes and lattice triangulations. It includes the definition of dual and
reflexive polytopes, the P - and the Q-polynomial of a lattice polytope
as well as unimodular triangulations. It concludes with the investiga-
tion of certain groups and group homomorphisms, which are defined
by lattice triangulations. They will be useful in later chapters for the
description of toric varieties for combinatorial calculations in Viro’s
patchworking method.

1.2.1 Definition: A lattice is a discrete free abelian group of finite
rank.

Remark: Every lattice is isomorphic to Zd, for some nonnegative in-
teger d. In our applications the lattice will mostly be just Zd, as there
will be no need for greater generality.

1.2.2 Definition: A lattice equivalence is a bijective affine linear map
f : Rd → Rd such that f(Zd) ⊂ Zd.
A lattice polytope is a polytope ∆ ⊂ Rd, such that all its vertices lie in
Zd. We write ∆(i) for the set of i-dimensional faces of ∆.
We define

l(∆) := #(∆ ∩ Zd),

l∗(∆) := #(Int(∆) ∩ Zd)

and
l∂(∆) := #(∂∆ ∩ Zd).
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1.2.3 Definition: Let ∆ ⊂ Rd be a lattice polytope, such that 0 ∈
Int(∆). The dual polytope (or polar polytope) ∆∗ is defined as

∆∗ := {x ∈ Rd | 〈x, y〉 ≥ −1 for all y ∈ ∆}.

∆ is called reflexive if ∆∗ is again a lattice polytope.
If Γ is a proper face of ∆ and ∆ is reflexive, then

Γ∗ := {x ∈ Rd | 〈x, y〉 = −1 for all y ∈ Γ} ∩∆∗

is called the dual face of Γ.

1.2.4 Proposition: Let ∆ be a lattice polytope.

(i) (∆∗)∗ = ∆,

(ii) ∆ is reflexive ⇐⇒ ∆∗ is,

(iii) ∆ is reflexive if and only if there are no lattice points between k∆
and (k + 1)∆ for any k ∈ N,

(iv) 0 is the only interior point of a reflexive polytope.

(v) If Γ is a proper face of a reflexive polytope ∆, then dim Γ∗ =
dim ∆− 1− dim Γ.

Proof: (i) and (ii) are easy to verify. For (iii), see [Hse]. (iv) follows
from (iii) by setting k = 0.
(v) is easily verified, if Γ is a vertex of ∆. The general case then follows
by noting that

Γ∗ =
⋂

v∈Γ(0)

v∗.

�

1.2.5 Proposition: Let ∆ be a 3-dimensional reflexive polytope. For
any face Γ ∈ ∆(1) let Γ∗ ∈ ∆∗(1) denote the dual face. Then

∑

Γ∈∆(1)

(l(Γ)− 1)(l(Γ∗)− 1) = 24.

Proof: In [Bat2] V. Batyrev showed that the left hand side is the
Euler characteristic of some complex K3 surfaces (see Chapter IV for
more details on his construction). On the other hand, it is well-known
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(compare proposition 4.2.1) that the Euler characteristic of any complex
K3 surface is 24. �

Remark: The above proof using K3 surfaces is the only “nice” proof
known to us. As the complete list of 3-dimensional reflexive polytopes
is available today, a “brute-force” proof, which consists in checking on
all examples, is of course also possible.

1.2.6 Definition: Let σ ⊂ Rd be a d-dimensional lattice simplex with
vertices v0, v1, . . . , vd. The normalized volume volN (σ) is defined as the
absolute value of the determinant of the n×n-matrix (v1−v0, . . . , vd−
v0).

Remark: The normalized volume is invariant under lattice equiva-
lences, as these are given as a composition of a translation (which ob-
viously does not affect the normalized volume) and a linear map given
by some A ∈ GL(d,Z), which has determinant ±1.

Moreover, the euclidian volume and the normalized volume are re-
lated by vol(σ) = 1

d!
volN(σ). As the normalized volume of the standard

simplex is 1, it can be interpreted as “rescaling” of the euclidian volume
so as to measure the volume in multiples of the smallest possible lattice
simplex (of a fixed dimension).

1.2.7 Definition: A simplicial complex T is called d-dimensional if d
is the maximal dimension of its simplizes and for all v ∈ |T | there is a
d-dimensional simplex in T containing v.
A simplicial lattice complex is a simplicial complex consisting of lattice
simplizes. It is called maximal if if it cannot be further subdivided
using lattice simplizes. It is called unimodular if all simplizes have
normalized volume 1.

1.2.8 Definition: A lattice triangulation T of a lattice polytope ∆ is
a simplicial lattice complex, such that the realization |T | = ∆. We will
designate the induced triangulation on ∂∆ by ∂T .
For j = 0, . . . , d we will often write for commodity

fj := #T (j),

f∂
j := #{σ ∈ T (j)|σ ⊂ ∂∆},

f ∗
j := #{σ ∈ T (j)|σ ⊂ Int∆},

where T (j) designates the set of j-dimensional simplizes in T . When we
talk of maximal or unimodular triangulations of ∆ we will automatically
understand that they are lattice triangulations.
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1.2.9 Proposition: Let T be a simplicial lattice complex.

a) T is maximal if and only if for all σ ∈ T , Int σ ∩ Zd = ∅.

b) If T is unimodular, then it is maximal.

c) If T is maximal and dim |T | ≤ 2, then it is also unimodular.

d) The following are equivalent:

(i) T is unimodular,

(ii) For all σ ∈ T : The differences v1 − v0, . . . , vs − v0 are part of a
Z-basis of Zd (where v0, v1, . . . , vs designate the vertices of σ),

(iii) For all σ ∈ T : σ is lattice equivalent to the s-dimensional stan-
dard simplex.

Proof: In the proofs of a) - d) we may without loss of generality assume
that T consists of a single simplex σ of maximal dimension.

To a): Obviously, if σ has an inner lattice point there exists a
subdivision of σ. Assume, on the other hand, that Int(σ) = ∅ and
σ′ ⊂ σ is subsimplex of σ. The vertices of σ′ must be vertices of σ as
well, as σ has no inner lattice point. But then σ′ is a face of σ, so there
does not exist a proper subdivision of σ.

To b): Obviously a simplex of normalized volume 1 cannot be truly
subdivided by using lattice simplizes, as the normalized volume is al-
ways an integer.

To c): This is obvious for dimσ ∈ {0, 1}. So let dim σ = 2. Without
loss of generality we may assume that (0, 0) and (1, 0) are vertices of σ.
If (a, b) is the third vertex, then the maximality of σ leads to b = ±1
(otherwise, if, say, b ≥ 2, then either (1, 1) of (0, 1) obviously lies in σ).
But then

volN (σ) =

∣∣∣∣
1 a
0 ±1

∣∣∣∣ = 1,

so σ is unimodular.

To d): Clearly (ii) and (iii) are equivalent. As the standard simplex
has normalized volume 1, (iii)→ (i) is also evident. So assume now σ is
a simplex of normalized volume 1. We may assume that v0 is the origin,
then the other vertices are a Q-basis of Rdimσ. Let A be the transfor-
mation matrix to the standard basis of Rdimσ. Then A ∈ GL(dim σ,Z)
if and only | det(A)| = 1. But | det(A)| is also the normalized volume
of σ, which concludes the proof. �
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1.2.10 Proposition: Let T be a lattice triangulation of a d-dimensional
lattice polytope ∆ ⊂ Rd with d ≥ 1. Then

(d− 1)fd = −f∂
d−1 + 2

(
fd−2 − fd−3 ± . . .+ (−1)df0 − (−1)d

)
.

Proof: Any d-dimensional simplex has d+ 1 facets, whereas each σ ∈
T (d− 1) is a facet of

• exactly two simplizes of the triangulation if σ ∩ Int(∆) 6= ∅,

• exactly one simplex of the triangulation if σ ∈ ∂∆.

So,

(d+ 1)fd = 2f ∗
d−1 + f∂

d−1.

= 2fd−1 − f
∂
d−1.

Eliminating the term with fd−1 by using 1 = χ(∆) =
∑

(−1)jfj yields
the assertion. �

1.2.11 Corollary: Let ∆ be a 2-dimensional lattice polytope. Then

volN(∆) = l(∆) + l∗(∆)− 2.

Proof: Let T be a maximal triangulation of ∆. Then T is also uni-
modular, so f2 = volN (∆). Clearly, f0 = l(∆), so the above proposition
yields

volN(∆) = −vol(∆) + 2l(∆)− 2

= −l(∆) + 2l(∆)− 2

= l(∆) + l∗(∆)− 2.

�

1.2.12 Definition: Let ∆ ⊂ Rd be a lattice polytope. We define the
following two formal power series

Φ(∆; t) :=
∞∑

i=0

#(i∆ ∩ Zd) ti

Ψ(∆; t) :=

∞∑

i=0

#(Int(i∆) ∩ Zd) ti.
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We hereby set by convention Int(0 · ∆) := ∅. Φ is also called the
Ehrhart series of ∆.

The additional convention is motivated by the idea that we are
looking at the cone generated by ∆×{1} and lattice points of “height”
i. The origin is always a boundary point of this cone and thus should
not occur in the calculation of Ψ.

These series are obviously invariant under lattice equivalences. They
have the following properties:

1.2.13 Proposition: Let ∆ be a d-dimensional lattice polytope.

a) Φ(∆; t) and Ψ(∆; t) are rational functions of the form

Φ(∆; t) =
P (∆; t)

(1− t)d+1
,

Ψ(∆; t) =
Q(∆; t)

(1− t)d+1
,

where P andQ are polynomials with nonnegative integer coefficients
and of degree at most d+ 1.

b) P (∆; t) = td+1Q(∆; t−1).

c) P (σ(d); t) = 1 (where σ(d) is the d-dimensional standard simplex).

d) Let T be a unimodular triangulation of ∆. Then

P (∆; t) = (1− t)d+1 +
d∑

j=0

fjt
j+1(1− t)d−j ,

Q(∆; t) = (t− 1)d+1 +
d∑

j=0

fj(t− 1)d−j.

Proof: See [Hse]. �

1.2.14 Corollary: For a unimodular triangulation T of a lattice poly-
tope the numbers fj = #T (j) are independent of the particular choice
of triangulation for all j ≥ 0.

Proof: Part (d) of proposition 1.2.13 shows that the numbers #T (j)
of a unimodular triangulation T turn up as coefficients of the P - re-
spectively the Q-polynomial (viewed as polynomials in t − 1). As the
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polynomials are defined independently of any triangulation, the #T (j)
must be independent, too. �

1.2.15 Definition: A triangulation T of a bounded polytope ∆ is
called coherent if it admits a strongly convex piecewise linear function
on it, that is a convex function ν : ∆→ R such that ν|σ is affine linear
for all σ ∈ T and ν|σ 6= ν|σ′ for distinct σ, σ′ ∈ T .

1.2.16 Proposition: For any lattice polytope ∆ there exists a coher-
ent maximal lattice triangulation of ∆.

Proof: See [Hse]. �

Remark: Most “naturally arising” triangulations are indeed coherent.
Examples for non-coherent triangulations can be seen in figure 1.4. It
can be directly verified that these triangulations do not admit a strongly
convex p.l. function, but it also follows elegantly from the following
result.

Figure 1.4: Non-coherent lattice triangulations

1.2.17 Proposition: Let ∆ ⊂ Rd be a lattice polytope and T a lattice
triangulation of it. We define the characteristic function of T by

νT :T (0)→ R

v 7→
∑

σ∈star(v)

volN(σ).

Then the map T → νT is injective for coherent triangulations.

Proof: See [GKZ]. �
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1.2.18 Corollary: It is easy to check that the triangulations in figure
1.4 have the same characteristic functions. According to the proposition
they cannot be coherent.

Now we turn our attention to some groups defined by lattice polytopes,
which will be useful in the following chapters.

1.2.19 Definition: For v ∈ Zd we designate by v the image of v in
(Z/2Z)d = (F2)

d by the projection map.

1.2.20 Definition: For any lattice simplex σ ⊂ Rd with vertices
v0, . . . , vk we define Lin2(σ) to be the F2-vector space generated by
{v1 − v0, . . . , vk − v0} and set

dim2 σ := dimF2 Lin2(σ).

For a simplicial lattice complex T we define

dim2 T := dimF2

∑

σ∈T

Lin2(σ).

Let ∆ ⊂ Rd be a lattice polytope. Recall that Lin(∆) is the linear
subspace generated by {v − v0 | v ∈ ∆}, for any fixed v0 ∈ ∆.

1.2.21 Definition: We define

Latt(∆) := Lin(∆) ∩ Zd

and
S∆ := Hom

(
Latt(∆), {±1}

)
.

In the following we will write ξu instead of ξ(u) for ξ ∈ S∆ and
u ∈ Latt(∆).

1.2.22 Proposition: Let ∆ ⊂ Rd be a k-dimensional lattice polytope.
Then

Latt(∆) ∼= Zk.

Proof: As ∆ is rational, Lin(∆)∩Qd is a k-dimensional Q-vector space.
By proposition 1.2.30,

Latt(∆) = (Lin(∆) ∩Qd) ∩ Zd ∼= Zk.

�
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Remark: S∆ is an abelian group and hence a Z-module. The Z-module
structure is given by a · ξ(u) = (ξ(u))a. As the right hand side depends
only on the residue class mod 2 of a, S∆ has a natural structure of
F2-vector space given by a · ξ(v) = (ξ(v))a. Any group isomorphism
of S∆ to some other group thus can also be considered as a Z-module
isomorphism as well as an isomorphism of F2-vector spaces.

It is easy to verify that by choosing a Z-basis for Latt(∆) we can
identify S∆ with the group {±1}s, where s := dim Lin(∆) = dim ∆,
setting

(ξ1, . . . , ξs)(u) := ξu1
1 . . . ξus

s ,

where u1, . . . , us are the coordinates of u in the chosen basis. This
description justifies the notation introduced above.

1.2.23 Definition: For any lattice polytope ∆′ ⊂ ∆ define

N∆/∆′ := {ξ ∈ S∆ | ξ ≡ 1 on Latt(∆′)}.

1.2.24 Proposition: The (group-, Z-module-, F2-vector space-) ho-
momorphism

S∆/N∆/∆′ −→ S∆′

induced by the restriction map is an isomorphism.

The proof will require some preliminary results, so we postpone it
to the end of the section.

1.2.25 Corollary: N∆/∆′ consists of 2dim∆−dim ∆′

elements.

Proof: By the previous proposition

dimF2 N∆/∆′ = dimF2 S∆ − dimF2 S∆′

= dim Lin(∆)− dim Lin(∆′)

and the assertion follows immediately. �

1.2.26 Corollary: For ∆′ ⊂ ∆ there is a natural injection

S∆′ ⊂ S∆.

Proof: By proposition 1.2.24 we can naturally identify S∆′ with the
orthogonal complement of N∆/∆′ , which is a subspace of S∆. �

Any w ∈ Latt(∆) defines a homomorphism S∆ → {±1} by ξ 7→ ξw.
As the latter is 1 for all w ∈ 2 Latt(∆), this defines a homomorphism
Latt(∆)/2 Latt(∆) −→ Hom(S∆, {±1}) =: (S∆)∨ which in fact turns
out to be an isomorphism:
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1.2.27 Proposition: The map

Latt(∆)/2 Latt(∆) −→ (S∆)∨

w 7→ (ξ 7→ ξw)

is well-defined and an isomorphism (of groups and of F2-vector spaces).

Proof: It is easy to verify that the homomorphism

Latt(∆) −→ (S∆)∨

w 7→ (ξ 7→ ξw)

has kernel 2 Latt(∆). Thus the map in the assertion is a well-defined
injective homomorphism. As Latt(∆)/2 Latt(∆) and (S∆)∨ have the
same number of elements (namely 2dim ∆), the map is also surjective.

�

1.2.28 Definition: Let w ∈ Latt(∆). Then we define ŵ ∈ S∆ by
setting

ŵ(u) := (−1)〈u,w〉.

Remark: If (w1, . . . , ws) are the coordinates of w in some Z-basis
of Latt(∆), then ((−1)w1 , . . . , (−1)ws) are the coordinates of ŵ in the
above described identification of S∆ with {±1}s.

The rest of the section is devoted to the proof of proposition 1.2.24.

Let V be a d-dimensional Q-vector space.

1.2.29 Proposition: v1, . . . , vk ∈ V are Q-linearly independent if and
only if they are Z-linearly independent.

Proof: One direction is immediately clear: If v1, . . . , vk are Z-linearly
dependent, then they are also Q-linearly dependent.

So now let’s assume that v1, . . . , vk are Q-linearly dependent, so that
they fulfill an equation

a1v1 + . . .+ akvk = 0

for some ai ∈ Q not all equal to 0. Then there is a d ∈ Z such that
dai ∈ Z for all i = 1, . . . , k. From

(da1)v1 + . . .+ (dak)vk = 0

follows, that v1, . . . , vk are also Z-linearly dependent. �
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1.2.30 Proposition: Let V be a Q-vector subspace of Qd with dimQ V =
k. Then

V ∩ Zd ∼= Zk.

Proof: Clearly, V ∩ Zd is a lattice, so it is isomorphic to Zk̃ for some
nonnegative integer k̃. According to the previous proposition there can
be at most k Z-linearly independent vectors in V ∩Zd, so it follows that
k̃ ≤ k.

On the other hand, let {v1, . . . , vk} be a Q-basis of V . Then there
is a d ∈ Z, such that dvi ∈ Zd for all i = 1, . . . , k. As dv1, . . . , dvk are
still linearly independent, k̃ ≥ k, which concludes the proof. �

1.2.31 Proposition: Let V ⊂ Qd be a Q-vector subspace and let
{v1, . . . , vk} be a Z-basis of V ∩ Zd. Then there are vk+1, . . . , vd ∈ Zd

such that {v1, . . . , vd} is a Z-basis of Zd.

Proof: Without loss of generality we may assume that dimV = d− 1
(otherwise we can prove the statement inductively by considering a
chain V = V0 ⊂ . . . ⊂ Vd−dimV = Qd and dimVi−1 = dimVi + 1). Then
there exists a linear form α, such that V = {α = 0}. Let (a1, . . . , ad) ∈
Qd be the coordinates of α in the standard basis. By appropriate
multiplication of α by a scalar in Q we may assume that (a1, . . . , ad) ∈
Zd and

gcd(a1, . . . , ad) = 1.

But then, there exist x1, . . . , xd ∈ Z such that

a1x1 + . . .+ adxd = 1.

Let vd be the vector with coordinates (x1, . . . , xd). Then we claim that
{v1, . . . , vd} is a Z-basis of Zd.

To verify this, we note first, that {v1, . . . , vd} is a Q-basis of Qd (if
b1v1 + . . . + bdvd = 0 for some bi ∈ Z, then by applying α we get that
bd = 0 and hence bi = 0 for all i = 1, . . . , d). So, for any v ∈ Zd, there
are b1, . . . , bd ∈ Q such that

v = b1v1 + . . .+ bdvd.

Applying α to both sides we get

α(v) = α(b1v1 + . . .+ bd−1vd−1) + bdα(vd)

= bd.

As α(v) ∈ Z, so is bd. With v − bdvd ∈ V ∩ Zd, a1, . . . , ad must be
integers as well. �
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1.2.32 Corollary: Let V ⊂ Qd be a vector subspace, A a Z-module
and g ∈ Hom(V ∩ Zd, A). Then there is an h ∈ Hom(Zd, A) such that
h|V ∩Zd = g.

Proof: Let v1, . . . , vk be a Z-basis of V ∩ Zd. By the previous propo-
sition we can extend it to a Z-basis of Zd,say {v1, . . . , vd}. Then the
assertion follows by taking as h the homomorphism defined by

h(vi) =

{
g(vi), i = 1, . . . k,

1, i = k + 1, . . . , d.

�

Proof of proposition 1.2.24: The restriction to Lin(∆′) defines a
homomorphism S∆ −→ S∆′ with kernel N∆/∆′. By corollary 1.2.32 the
map is surjective, which shows the assertion. �



II Toric Varieties

In the first section of this chapter we review some general concepts of
the theory of toric varieties, which are independent of the base field. In
the second section we concentrate on real toric varieties, with special
consideration of topological results.

2.1 Toric Varieties over any Field

In this section we mainly follow the article of Danilov in [Dan]. The
theory of toric varieties over the complex numbers can also be found in
the textbooks [Ful] and [Oda].

Throughout this chapter let K be an arbitrary field, d a nonnegative
integer, N a d-dimensional lattice and M its dual. Let NR := N ⊗Z R
and MR := M ⊗ R denote the real vector spaces generated by the
respective lattices.

2.1.1 Definition: Let Σ be a finite collection of rational, polyhedral
cones with the following properties:

(i) All cones σ ∈ Σ are strongly convex, that is, σ ∩−σ = 0.

(ii) If τ is a face of σ and σ ∈ Σ, then τ ∈ Σ.

(iii) For all σ, τ ∈ Σ: σ ∩ τ is a common face of both σ and τ .

Σ is called a fan in NR.
Σ is called smooth, if all its cones are smooth, that is, any σ ∈ Σ is

generated by a part of a Z-basis of N . If the generators of any σ ∈ Σ
are part of a basis of NR, then Σ is called simplicial.
The set

supp (Σ) :=
⋃

σ∈Σ

σ

is called the support of Σ. Σ is complete if supp (Σ) = NR.
We say that Σ is k-dimensional, if all its maximal cones are k-dimensional.

41
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2.1.2 Definition: Let Σ be a fan in NR. For any σ ∈ Σ let

σ∨ := {m ∈M | 〈m, v〉 ≥ 0 ∀v ∈ σ}

denote the dual cone. We define the affine toric variety associated with
σ to be

Xσ := Spec K[σ∨ ∩M ].

Its (K-valued) points are the morphisms Spec K→ Xσ, which are given
by homomorphisms of semigroup σ∨ ∩M −→ K.

For two cones σ ⊂ τ , the induced map Xσ → Xτ is an open immer-
sion (see [Dan], 2.6.1) and the map Xσ → Xτ → Xω for σ ⊂ τ ⊂ ω is
the same as Xσ → Xω. Thus, for a fan Σ, the affine toric varieties Xσ,
σ ∈ Σ, glue to form an abstract algebraic variety XΣ, which is called
the toric variety associated with Σ.

Remark: The definition of Xσ is justified by the fact that K[σ∨ ∩M ]
is indeed a reduced finitely generated K-algebra (see e.g. [Dan], 1.3).

For the moment we distinguish between the points of a toric variety
and the variety itself, which is somewhat more than just the set of its
points. For algebraically closed base fields the difference is not decisive
as there is a 1-1-correspondence between closed points of the variety
(i.e. maximal ideals of K[σ∨ ∩M ]) and K-points defined as above (and
hence for K = C we find one type of definition in [Oda] and the other
one in [Ful]). For non-algebraically closed fields the distinction becomes
necessary as the K-points become “relatively few” in comparison to the
closed points of the spectrum.

The language of spectra is universal and therefore well adopted for
treating algebraic problems independently of the base field. For topo-
logical considerations though (when the base field carries a topology,
like e.g. K = R or K = C), it is more natural to look at K-points only.

As in the end our aim are topological questions, we will finally
adopt the latter view. Only in this particular section, where we intro-
duce some basic concepts which are rooted in the fundamental relation
between the algebraic aspects of toric varieties and convex geometry,
we rely mainly on the spectra definition. We will parallelly explain how
these concepts work out on the level of points where it seems appropri-
ate to us.

Our first comment of this type concerns the above mentioned open
immersion Xσ → Xτ for cones σ ⊂ τ : The inclusion map of the points
is given by the restriction of Hom(σ∨ ∩M,K) to τ∨ ∩M .

2.1.3 Proposition: Let XΣ be a toric variety. Then

(i) dimXΣ = d,
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(ii) XΣ is a normal algebraic variety,

(iii) XΣ is smooth if and only if Σ is smooth,

(iv) XΣ is complete if and only if Σ is complete.

Proof: The first assertion follows from the next proposition as

dimXΣ = dim Spec K[M ] = dimRMR = d.

For the other assertions, see [Dan]. �

2.1.4 Proposition: For any fan Σ in NR the toric variety XΣ contains
the algebraic torus

T := Spec K[M ]

as open, dense subvariety. The action of the torus on itself by multi-
plication extends to an algebraic action on XΣ. Locally, on Xσ, it is
given by the map

K[σ∨ ∩M ]→ K[M ] ⊗K[σ∨ ∩M ]

u 7→ u⊗ u

for u ∈ σ∨ ∩M . For σ ∈ Σ let

Oσ := Spec K[σ⊥ ∩M ],

which is embedded as subvariety of Xσ and hence of XΣ via the pro-
jection map σ∨ ∩M → σ⊥ ∩M which maps u to 1 if u ∈ s⊥ ∩M and
to 0 otherwise.

Oσ is an algebraic torus of dimension d − dim σ and the different
Oσ, for σ ∈ Σ, are exactly the orbits of the T-action. The closure Oσ is
the union of all Oτ , τ ∈ Σ, with σ ⊂ τ and is itself again a toric variety
(with lattices M ∩ σ⊥ and its dual).

On the level of points the torus action can be described explicitly:
For t ∈ Hom(M,K) ∼= (K∗)d, the action on some x ∈ Hom(σ∨ ∩M,K)
is given by (

t · x
)
(u) := t(u)x(u).

For each σ ∈ Σ we define xσ ∈ Xσ as

xσ(u) :=

{
1, u ∈ σ⊥,

0 otherwise.

Then, for all σ ∈ Σ, xσ ∈ Oσ and hence Oσ = T · xσ. Its points can be
identified with (K∗)d−dim σ.
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Proof: See [Dan] and [Ful]. �

2.1.5 Definition: Let N,N ′ be two lattices and Σ,Σ′ fans in NR, N
′
R.

A toric morphism XΣ → XΣ′ is the morphism induced by a lattice
homomorphism ϕ : N → N ′ such that for any σ ∈ Σ there is a σ′ ∈ Σ′

with ϕ(σ) ⊂ σ′.

2.1.6 Proposition: A toric morphism ϕ commutes with the torus ac-
tion, that is

ϕ(t · x) = ϕ(t) · ϕ(x)

for all t ∈ T, x ∈ XΣ.

Proof: ϕ induces a lattice homomorphism M ′ → M and a K-algebra
homomorphism ϕ̃ :K[(σ′)∨ ∩M ′] → K[(σ)∨ ∩M ] for all σ′ in Σ′. The
proof now follows from a commuting diagram mainly stating that the
map u 7→ u′ 7→ u′⊗u′ is equal to u 7→ u⊗u 7→ u′⊗u′, where u′ = ϕ̃(u).
�

Remark: The map Σ → XΣ defines a covariant functor from the
category of fans (with the above described lattice homomorphisms as
morphisms) and the category of normal algebraic varieties that contain
an algebraic torus as open, dense subset such that the action of the
torus on itself extends to the whole variety. The morphisms are taken to
be lattice homomorphisms mapping cones into cones respectively toric
morphisms. This functor defines in fact an equivalence of categories,
so any such algebraic variety X is of the form XΣ (and M is the lattice
of characters of the algebraic torus).

In the following we will present some facts about divisors, invertible
sheaves and line bundles on toric varieties. Before doing so, we briefly
review the general concepts. These can be found e.g. in [Hart]. To
simplify things slightly, we will assume that X is a normal algebraic
variety (this includes toric varieties).

A Weil divisor D on X is a formal sum D =
∑
niYi, where the Yi are

irreducible closed subvarieties of X of codimension 1, and ni ∈ Z with
only finitely many different from zero.
A rational function f on X defines a Weil divisor in the following way:
Let Y1, . . . , Yr be the irreducible components of the zero set of f with
multiplicities n1, . . . , nr and Z1, . . . , Zs the irreducible components of
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the pole set of f with multiplicities m1, . . . , ms. Then the divisor (f) :=∑
niYi −

∑
mjZj is called a principal divisor.

The group of Weil divisors modulo principal divisors is called the divisor
class group and denoted by Cl(X).

The concept of divisor classes can be generalized to subvarieties of
arbitrary dimensions. The resulting groups are called Chow groups; in
this sense Cl(X) is the same as the Chow group Ad−1(X).

A Cartier divisor is a locally principal Weil divisor, that is a Weil
divisor D, such that there exists an open covering U of X such that
D|U is principal for each U ∈ U .

A Cartier divisor can be given by the following data: an open covering
U of X and rational functions fU for each U ∈ U , such that fU

fV
∈

O∗
X(U ∩ V ) for all U, V ∈ U .

If X is smooth then the respective groups of Weil and Cartier divisors
are isomorphic.

The group of Cartier divisors modulo principal divisors is denoted by
CaCl(X).

An invertible sheaf is a locally free OX-module of rank 1. The group
of isomorphism classes of invertible sheaves with the tensor product as
group operation is called the Picard group of X and denoted by Pic(X).

Let D be a Cartier divisor, given by an open covering U and ratio-
nal functions fU . Then D defines an invertible sheaf L(D) by setting
L(D)(U) := f−1

U OX(U) for all U ∈ U . The map D 7→ L(D) defines a
group isomorphism CaCl(X)→ Pic(X).

A line bundle L on X is said to be generated by global sections if
there are global sections si ∈ L(X) such that for all x ∈ X the images
of the si generate Lx as Ox-module. L is very ample if L admits a
finite set of global section s0, . . . , sn such that the morphism X → Pn,
x 7→ [s0(x) : . . . : sn(x)] is an embedding. L is ample if L⊗m is very
ample for some m > 0.

A line bundle over X is an algebraic variety Y together with a
morphism π : Y → X, such that there is an open covering U of X
and isomorphisms ϕU : π−1(U) → U × A1 for all U ∈ U , such that
ϕV ◦ ϕ

−1
U : U ∩ V ×A1 → U ∩ V ×A1 is given by (x, y) 7→ (x, fUV (x)y)

with fUV ∈ O
∗
X(U ∩V ) (in other words ϕV ◦ϕ

−1
U is induced by the map

OX(U∩V )[y]→ OX(U∩V )[y], y 7→ fUV (y)). Two line bundles π : Y →
X, π′ : Y ′ → X with transition functions {fUV }, {f

′
UV } (by refinement

we can assume that the coverings are identical) are isomorphic if there
are gU ∈ O

∗
X(U) for all U ∈ U such that fUV f

′−1
UV = gUgV

−1 for all
U, V ∈ U .

Let E be an invertible sheaf on X, D a Cartier divisor such that E ∼=
L(D). Let U be an open covering ofX andD be represented by rational
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functions fU for U ∈ U . Let Y be the (abstract) algebraic variety
defined by the covering {U × A | U ∈ U} and isomorphisms U × A1 ⊃
U ∩ V ×A1 → U ∩ V ×A1 ⊂ V ×A1, given by (x, y) 7→ (x, fUf

−1
V (x)y)

(the isomorphisms are induced by the maps OV (U ∩ V )[y]→ OU(U ∩
V )[y], y 7→ fUf

−1
V y). Then Y with the natural projection to X is a

line bundle that does not depend (up to isomorphism) on the choice
of D and its representation. The described assignment yields a 1-1
correspondence between isomorphism classes of invertible sheaves and
isomorphism classes of line bundles.

Now we turn to toric varieties. We will from now on assume that the 1-
dimensional cones of Σ generate NR as a real vector space. Furthermore
in our notation we will not distinguish rays and the first lattice point
lying on them. In the given context it will always be clear what is
meant.

2.1.7 Definition: A T-stable Weil divisor on XΣ is a divisor that
remains invariant under the torus action. For ρ ∈ Σ(1) let

Dρ := Oρ

designate the corresponding T-stable divisors.

2.1.8 Proposition: a) The {Dρ | ρ ∈ Σ(1)} is equal to the set of
all different T-stable irreducible closed subvarieties of XΣ of codi-
mension 1. So D is a T-stable Weil divisor on XΣ if and only if
D =

∑
ρ∈Σ(1) aρDρ for some aρ ∈ Z. The piecewise linear function

ψD on NR defined by
ψD(ρ) = −aρ

and linear continuation is called the support function of D and also
characterizes D uniquely.

b) The images of the T-stable Weil divisors generate the divisor class
group, respectively the Chow group Ad−1(XΣ).

c) There is an exact sequence

0 −→M −→
⊕

ρ∈Σ(1)

Z −→ Ad−1(X) −→ 0 (*)

and a related sequence of real vector spaces

0 −→MR
α
−→ Rr β

−→ Ad−1(X)⊗Z R −→ 0, (*)

where r = #Σ(1).
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2.1.9 Proposition: The Weil divisor

∑

ρ∈Σ(1)

−Dρ

defines a canonical divisor.

2.1.10 Proposition: a) A Weil divisor D =
∑
aρDρ is a Cartier di-

visor if and only if there is a sequence (mσ)σ∈Σ with mσ ∈M , such
that mσ −mσ′ ∈ (σ ∩ σ′)⊥ for all σ, σ′ ∈ Σ and aρ = 〈mρ, ρ〉. Two
sequences (mσ)σ, (m

′
σ)σ define the same Cartier divisor if and only

if mσ −m
′
σ ∈ σ

⊥ for all σ ∈ Σ.

b) The images of the T-stable Cartier divisors generate the Cartier
divisor class group CaCl(XΣ) ∼= Pic(XΣ).

2.1.11 Definition: Let D =
∑r

i=1 aiρi be a T-stable Weil divisor on
XS. We define a (possibly empty) convex polyhedron

∆ :={m ∈MR | 〈m, ρi〉 ≥ −ai ∀i}

={m ∈MR | m ≥ ψD on supp (D)}.

2.1.12 Proposition: Let L = L(D) be a line bundle on X. The
following are equivalent:

(i) L is ample,

(ii) L is very ample,

(iii) ψD is strictly convex,

(iv) ∆ has nonempty interior

(v) X is quasi-projective.

If L is ample, ∆ is dual to Σ in the sense, that there is an inclusion-
reversing bijection between faces of ∆ and cones of Σ, and L is gener-
ated by global sections with H0(X,L) = K[∆ ∩M ]. If furthermore X
is complete, then ∆ is bounded and X is projective.

Remark: In dimensions up to 2, every complete toric variety is pro-
jective. But in dimension 3 there are complete fans that do not ad-
mit strictly convex support functions (they are closely related to non-
coherent triangulations of 2-dimensional polytopes).
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2.1.13 Proposition: Let Σ ⊂ Rd be a smooth fan and X the corre-
sponding toric variety. Let L be an invertible sheaf on X. Then the
corresponding line bundle Y can be constructed as toric variety in the
following way:

Let D =
∑
aρρ be a Cartier divisor such that L = L(D) and

ν = −ψD, where ψD is the support function of D (so ν(ρ = aρ). Let
ρ0 = (0, . . . , 0, 1) ∈ N ×Z. For each σ ∈ Σ let σ̃ be the cone generated
by the graph of ν|σ and ρ0. Then we define Σ̃ := {0} ∪ {σ̃ | σ ∈ Σ}
and Y to be the corresponding toric variety. The bundle map Y → X
is induced by the projection map Zd ×Z→ Zd (mapping each σ̃ to σ).

Proof: For all σ ∈ Σ let fσ be the rational function defined by ν (i.e.
for all generators ρ of σ, fσ has a pole of order n along Oρ, if and only
if ν(ρ) = n). fσ corresponds to uσ ∈ Zd with 〈uσ, ρ〉 = ν(ρ) for all ρ.

We have to show the following:

(1) For all σ ∈ Σ there is an isomorphism ϕσ : Uσ̃ −→ Uσ × A1.

(2) For all σ, σ′ ∈ Σ

ϕσ′ ◦ ϕ−1
σ : Uσ′∩σ × A1 → Uσ∩σ′ ×A1

is given by (x1, . . . , xd, y) 7→ (x1, . . . , xd,
fσ

fσ′

y).

These conditions are equivalent to the following ones:

(1’) For all σ ∈ Σ there is an isomorphism ψσ : R[σ∨ ∩ Zd][y] −→
R[σ̃∨ ∩ Zd × Z].

(2’) For all σ, σ′ ∈ Σ

ψ−1
σ ◦ ψσ′ : R[(σ ∩ σ′)∨ ∩ Zd][y]→ R[(σ′ ∩ σ)∨ ∩ Zd][y]

is given by y 7→
fσ

fσ′

y

and the identity on R[(σ ∩ σ′)∨ ∩ Zd].

Let σ̃ be any cone of S̃. Let ρ1, . . . , ρs be the generators of σ. As Σ
is smooth, they are part of a Z-basis of Zd. Without loss of generality
we may assume that σ is full-dimensional, that is, s = d (otherwise we
restrict to the s-dimensional sublattice generated by ρ1, . . . , ρs). Then
σ∨ is generated by the dual basis ρ̂1, . . . , ρ̂d.

It is easy to verify that s̃∨ is generated by ρ̂1 × {0}, . . . , ρ̂d × {0}
and τ −

∑d
i=1 ν(ρi)ρ̂i (as it is the dual basis to the generators of σ̃ and

Σ̃ is also smooth). So obviously
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R[σ∨ ∩ Zd][y] = R[ρ̂1, . . . , ρ̂d][y]

∼= R[ρ̂1 × {0}, . . . , ρ̂d × {0}, τ −
d∑

i=1

ν(ρi)ρ̂i] = R[σ̃∨ ∩ Zd+1],

which proves (1) resp. (1’).

Now let σ̃, σ̃′ ∈ S̃.

ψ−1
σ ◦ψσ′(y) = ψ−1

σ (τ−
d∑

i=1

ν(ρ′i)ρ̂
′
i) = ψ−1

σ (τ−
d∑

i=1

ν(ρi)ρ̂i+uσ−uσ′) = y
fσ

fσ′

,

which shows (2) resp. (2’). �

Example: Let Σ ⊂ Rd be a smooth fan. Then D :=
∑

ρ∈Σ(1) de-

fines an anticanonical divisor (that is, −D is a canonical divisor). The
corresponding bundle is a toric variety with fan Σ′ with “all cones
lifted up by one”. More precisely, there is an inclusion-preserving
bijection Σ → Σ′ \ {0} mapping a σ with generators ρ1, . . . , ρs to
ρ1× ed+1, . . . , ρs× ed+1. In particular, all generators of rays of Σ′ lie on
the hyperplane {ud+1 = 1}.

2.2 Real Toric Varieties

While in the last section we investigated those properties of toric vari-
eties which are independent of the base field, in this section we will show
some particular properties of toric varieties over R. In the following we
will be mainly interested in the topological aspects of the point set of
the varieties. We therefore restrict and simplify our view from now on
by identifying a toric variety with its point set (as a topological
space). So, in the following, by “real toric variety” we designate the set
of (real) points of a toric variety over R (see also the definition below).
For the complex numbers we adopt the same terminology. Anyway, as
mentioned before, the distinction between the variety and its points is
in this case merely irrelevant.

For algebraic notions as divisors, projectivity etc. we will still refer
to the concepts explained in the last section (e.g., a divisor “is” still a
p.l. map on the fan, projectivity is given if and only if the toric variety
can be assigned to a bounded rational polytope etc. )
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2.2.1 Definition: The real affine toric variety assigned to a cone
σ ⊂ NR is defined to be

Xσ := Hom(σ∨ ∩M,R),

where “Hom” designates homomorphisms of semigroups.
If Σ ⊂ N is a fan, then the real toric variety assigned to Σ is defined

to be the algebraic variety obtained through an open cover {Xσ}σ∈Σ,
where Xσ ∩ Xτ is identified with Xσ∩τ (Xσ∩τ is naturally included in
both Xσ and Xτ ).

Remark: The above definition works analogously for any semigroup
instead of R. Substituting R by R≥0 we get a subset X+

Σ of XΣ, which
can be identified with the quotient space of XΣ under the action of the
compact torus Hom(M, {±1}).

As an other application, we get a natural inclusion of the real toric
variety XΣ,R into the complex toric variety XΣ,C, where it can be iden-
tified with the fixed point set of the complex conjugation.

For any real toric variety there is an action of the algebraic torus
TN := Hom(M,R) ∼= (R∗)d by multiplication:

t·x (u) := t(u)x(u),

where x is an element of some Xσ. For each σ ∈ Σ we define

xσ(u) :=

{
1, u ∈ σ⊥,

0 otherwise.

Then each orbit of the torus action contains exactly one such xσ and
Oσ := TN · xσ is isomorphic to (R∗)d−dimσ.

2.2.2 Proposition: A real toric variety is connected if and only if the
rays of its fan generate N/2N ∼= N ⊗Z Z/2 as F2-vector space.

Proof: See [Uma], Theorem 2.5. �

2.2.3 Proposition: (Uma) Let X be a smooth and connected real
toric variety. Then there is a representation of the fundamental group
of X with generators and relations as follows:

Let {ρ1, . . . , ρn} be the set of generators of rays of Σ(1), {ρ1, . . . , ρd}
a subset, which forms a basis for N ⊗Z Z/2 and let {ω1, . . . , ωd} be
the dual basis. Let aj,i := 〈ui, vj〉 mod Z/2 for 1 . . . ≤ j ≤ n. Then
A = (aj, i) is the characteristic matrix of ∆ with respect to {ρ1, . . . , ρd}.
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For t = (t1 . . . , td) ∈ (Z/2)d, let bji = ti + aj,i for 1 ≤ i ≤ d and
1 ≤ j ≤ n and let cp,q

i = ti + ap,i + aq,i for 1 ≤ i ≤ d; 1 ≤ p, q ≤ n. We
shall denote the vector (bji )i=1,...,n by bj and the vector (cp,q

i )i=1,...,n by
cp,q
i .

Then the fundamental group π1(X) has a presentation with gener-
ators

{yj,t : 1 ≤ j ≤ n | t = (τ1, . . . td) ∈ (Z/2)d}

and relations

⋃

t∈(Z/2)d

{yt1
1,(0,...,0), y

t2
2,(t1,0,...,0) · · · y

td
d,(t1,...,td−1,0)} (A)

⋃

t∈(Z/2)d

{yj,t · yj,bj | 1 ≤ j ≤ n} (B)

⋃

t∈(Z/2)d

{yp,t · yq,bp · yp,cp,q · yq,bq | ρp and ρq generate a 2-dim. cone of Σ}

(C)

Proof: See [Uma], proposition 3.1. �

Remark: The fundamental group depends only on the 2-skeleton of
the fan.

From now on, we will consider only quasi-projective toric varieties,
i.e. those which are assigned to a rational polyhedron in M .

From the last section we already know how to assign a toric variety
with a rational polyhedron (via its normal fan), but now we want to
present an independent but equivalent construction. It yields important
topological information on the variety, but there is a price to pay: It
seems that it works for K = C and its subfields only as it relies on
topological properties such as the existence of a norm.

So, let ∆ ⊂ MR be a (possibly unbounded) rational polyhedron.
We further assume, that its normal fan Σ∆ is simplicial.

Let D be the divisor belonging to ∆, that is, the p.l. function on
supp Σ∆, that defines ∆. We define a new polyhedron

∆̃ := β−1([D]) ∩ (R≥0)
r = (M̃R + a) ∩ (R≥0)

r,

where β is the map in (∗′) in the last section, a = (a1, . . . , ar) the
coefficients of D and M̃R the image of MR in Rr of the map α, also in
(∗′). ∆ and ∆̃ are combinatorially equivalent.
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We define
µΣ : Rr µ

−→ Rr β
−→ PicR(XΣ)

by setting µ(x1, . . . , xr) := 1
2
(x2

1, . . . , x
2
r). There is an action of Sr =

{±1}r on Rr by multiplication: (x1, . . . , xr) 7→ (ε1x1, . . . , εrxr), εi =
±1. Taking Hom(−, S) on the exact sequence (∗), we get the following
exact sequence:

0 −→ Sr−d −→ Sr −→ Sd −→ 0 (**)

so there is also an action of Sr−d on Rr and an action of Sd on Rr/Sr−d.
Note that µ is invariant under these actions.

2.2.4 Proposition: XΣ∆
is a geometrical quotient for

µ−1
Σ ([D])/Sr−d

which preserves the torus action.

Proof: See [Cox1] for K = C. The construction clearly works analo-
gously for K = R. �

Remark: By the above construction we get an obvious homeomor-
phism from XΣ/Sd = X+

Σ to ∆̃. Thereby an orbit closure Oσ, where
σ is generated by ρi1 , . . . , ρis, is mapped to the face of ∆̃ defined by
xi1 = . . . = xis = 0. In ∆, this is precisely the face orthogonal to
σ. Such a homeomorphism can even be explicitly stated in the case of
projective toric varieties in terms of a Sd-invariant map µ : XΣ → ∆
(see [Ful] for more details). This map is called the moment map. The
restriction of µ to ξ ·X+

Σ , for ξ ∈ Sd, will be designated by µ(ξ).
So XΣ is composed of copies ξ · ∆̃ of ∆̃ (or to be precise: of equiv-

alence classes of copies of ∆̃), one for each ξ ∈ Sd. If Γ̃ = ∆̃ ∩W is a
face of ∆̃ cut out by a linear subspace W ⊂ Rr, then ξ · Γ̃ = ξ′ · Γ̃ if
and only if ξ and ξ′ coincide on (W ∩Zr)/Sr−d. Taking this result over
to ∆ instead of ∆̃ we get the following topological construction:

2.2.5 Proposition: Let Σ be a full-dimensional simplicial fan in N ,
being the normal fan to some nonempty rational polyhedron ∆ ⊂ M .
Let X be the polyhedral complex obtained by taking one copy ∆(ξ) of
∆ for each ξ ∈ Sd and glueing the faces Γ(ξ) and Γ(ξ′) if and only if ξ · ξ′

is constant on Aff(Γ) ∩M , where Aff(Γ) is the affine subspace in MR

generated by Γ. Then X and XΣ are p.l. homeomorphic.
Moreover, the homeomorphism can be chosen in such a way that

for each σ ∈ Σ the orbit Oσ is mapped to the interior of the faces Γ(ξ)

where Γ is the face of ∆ orthogonal to σ.
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2.2.6 Corollary: If for two fans Σ,Σ′ as above there exists an inclusion-
preserving bijection f : Σ → Σ′, such that the images of σ ∩ Zd and
f(σ) ∩ Zd in (Z/2Z)d are equal for all σ ∈ Σ, then the corresponding
real toric varieties XΣ and XΣ′ are p.l. homeomorphic.

Proof: The corresponding polyhedra ∆ and ∆′ are combinatorially
equivalent (since their combinatorial structure is dual to the fans). For
any face Γ of ∆ the above described glueing rule can be be reformulated
as ξ · ξ′ ∈ Lin(Γ)⊥ ∩ Zd mod Z/2 (see section 1.2). The assertion now
follows as Lin(Γ)⊥ = Lin(σΓ), where σΓ is the face of Σ dual to Γ, as
also the glueing rules on ∆ and ∆′ coincide. �

2.2.7 Proposition: Let X = X∆ be a smooth real toric variety. Then
X and also the compactification X, defined as in section 1.1, are p.l.-
manifolds.

Proof: With proposition 1.1.30 it suffices to show that X is a PL-
manifold.

Let x ∈ X∆ be a point. Without loss of generality we can assume
that x is a vertex of ∆, so it corresponds to a full-dimensional cone
σx (and x = Oσx

). Let U ⊂ X be an open neighbourhood of x that
contains no other vertex of ∆. Then U is homeomorphic and also p.l.
homeomorphic to the affine real toric variety Xsx

. As X∆ is smooth,
σx is generated by a Z-basis of Zd, so U is p.l. homeomorphic to Rd. �

Example: Let N = Z2 and Σ the fan generated by ρ1 = e1, ρ2 =
e1 + e2, ρ3 = e2.

Figure 2.5: The fan Σ

It is well known that XΣ in this case is the blow-up of the affine
plane in the origin. The exact sequence (∗) becomes

0 −→ Z2 α
−→ Z3 β

−→ Z −→ 0
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and the mappings are given by α : (u1, u2) 7→ (u1, u1 + u2, u2) and
β : (x1, x2, x3) 7→ x1 − x2 + x3.

Let the function ψ be given by ψ(ρ1) = 0, ψ(ρ2) = 1, ψ(ρ3) = 3,
corresponding to the divisor D = (0, 1, 3) which defines the divisor class
[D] = 2. This gives rise to the polyhedron

∆ := {m ∈MR | m1 ≥ 0, m1 +m2 ≥ −1, m2 ≥ −3}

as well as to the polyhedron

∆̃ := {x ∈ R3 | x1 − x2 + x3 = 2 and x1, x2, x3 ≥ 0}.

Figure 2.6: The polyhedron ∆ Figure 2.7: The polyhedron ∆̃

We have
µ−1

Σ ([D]) = {x2
1 − x

2
2 + x2

3 = 4}

and the action of the nontrivial element of S = Hom(Z, S) is given by
(x1, x2, x3) 7→ (−x1,−x2,−x3). Thus we obtain a space X̃ homeomor-
phic toX by identifying points of opposite sign of the above hyperboloid
or, equivalently, by onsidering only the upper half of it (i.e. x2 ≥ 0),
identifying opposite points of its boundary circle.

Figure 2.8: The hyperboloid µ−1
Σ ([D])

This boundary circle corresponds to the exceptional curve of X,
which is the closure of Oρ2 and in the same way every other orbit
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closure Oσ can be recognized as X̃ ∩ {xi1 = . . . = xik = 0}, where
ρi1 , . . . , ρik are the 1-dimensional cones contained in σ.

Looking only at the upper half, it is clear that X̃ consists of four
copies of ∆̃ glued together. We label them according to the signs of
the coordinates x1 and x3 and interpret these labels as elements of
S2 = Hom(M, S). So we get ∆(++),∆(+−),∆(−+),∆(−−) and the action of
S2 gives ξ ·∆(ξ′) = ∆(ξξ′). Designating by Γ̃i := ∆̃∩{xi = 0},i = 1, . . . 3
the facets of ∆̃, it is easy to verify that

Γ̃
(++)
1 = Γ̃

(−+)
1 , Γ̃

(+−)
1 = Γ̃

(−−)
1 ,

Γ̃
(++)
3 = Γ̃

(+−)
3 , Γ̃

(−+)
3 = Γ̃

(−−)
3 ,

Γ̃
(++)
2 = Γ̃

(−−)
2 , Γ̃

(+−)
2 = Γ̃

(−+)
2 ,

where the last line comes from the identification under the action of S
on the hyperboloid. The 0-dimensional faces are analogously identified.

Carrying on the identifications to ∆ instead of ∆̃, we get the same
result by taking a copy ∆(ξ) of ∆ for each ξ ∈ S2 and glueing the faces
Γ(ξ) with Γ(ξ′) each time ξ and ξ′ coincide on the lattice points of the
(now affine) subspace generated by Γ.

Figure 2.9: Glueing of the copies of ∆
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2.3 Virtual Betti Numbers

Classically, Betti numbers of a topological space or an algebraic variety
are defined as dimensions of certain cohomology groups. There are
many ways to introduce cohomology for various classes of objects (we
will not cover this topic here, see instead [Hart] for a sheaf theoretic
definition or [DFN] for a topological definition), but in our setting and
with a little care on the question of compactness they fortunately all
coincide.

2.3.1 Definition: LetX = XR be a real algebraic variety, A an abelian
group and i a nonnegative integer. We set H i

c(XR, A) and H i
c(XC, A) to

be the singular cohomology groups with compact support of the topo-
logical spaces XR andXC respectively (whereXC is the complexification
of X). The (classical) i-th Betti number of X is defined as

bi(X) := dimH i
c(XR,Z/2Z).

The polynomial

PX(t) :=
∑

i≥0

bi(X)ti

is called the Poincaré polynomial of X and

χ(X) := PX(−1) =
∑

i≥0

(−1)ibi(X)

the Euler characteristic of X.

In the above definitions it would be equivalent to take sheaf coho-
mology or Borel-Moore cohomology (see [MCP]). Note however that
it is necessary to take compact supports to get the “correct” Euler
characteristic (see prop. 2.3.8).

On compact nonsingular real varieties the Betti numbers have many
nice properties, e.g. they are additive for the disjoint union of two
varieties and the Poincaré polynomial is multiplicative for a product of
varieties.

In [MCP] McCrory and Parusiński suggest a definition of invariants
of real algebraic varieties, which coincide with the usual Betti numbers
on compact nonsingular varieties, and extend the aforementioned prop-
erties to all other real varieties. They cannot longer be seen as ranks
of certain groups or modules as they may become negative, so Mc-
Crory and Parusiński call them “virtual Betti numbers”. The precise
definition is as follows:
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Let K0(VR) denote the Grothendieck ring of real algebraic varieties.
It is generated as abelian group by symbols [X], where X is a real
algebraic variety, and the following relations:
(1) [X] = [Y ] if X and Y are isomorphic,
(2) [X] = [X\Y ] + [Y ] if Y is a closed subvariety of X.

The product of K0(VR) is given as the product of varieties:
(3) [X] · [Y ] = [X × Y ].

2.3.2 Proposition: There exists a unique ring homomorphism

β : K0(VR)→ Z[t]

such that β([X])(t) =
∑

i≥0 b
i(X)ti.

Proof: See [MCP]. �

2.3.3 Corollary: For each i ≥ 0 there exists a unique group homo-
morphism

βi : K0(VR)→ Z

such that βi(X) = bi(X) for X compact and smooth.

Proof: Setting βi([X]) as the coefficient of ti in β([X], t) fulfills the
required condition. �

Remark: As on compact nonsingular varieties β([X], t) equals the
Poincaré polynomial, which is known to be multiplicative, the assertions
of the proposition and the corollary are in fact equivalent.

2.3.4 Definition: The numbers βi(X) := βi([X]) are called virtual
Betti numbers of X and β(X; t) := β([X])(t) the virtual Poincaré poly-
nomial of X.

2.3.5 Proposition: The virtual and non-virtual Euler characteristics
coincide for all real algebraic varietiesX, that is χ(X) =

∑
i≥0(−1)iβi(X).

Proof: See [MCP]. �

2.3.6 Proposition: Let d ≥ 0 be an integer. Then

β((R∗)d; t) = (t− 1)d

and so

βi((R∗)d) = (−1)d−i

(
d

i

)

for i = 0, . . . , d.
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Proof: For d = 0 the statement is obviously true.
For d = 1 we may view R∗ as RP1\{0,∞}. Hence by the additivity

of the virtual Betti numbers

βi(R∗) = βi(RP1)− 2βi(pt.) = bi(RP1)− 2bi(pt.).

So,

β0(R∗) = 1− 2 = −1 = (−1)1

(
1

0

)

and

β1(R∗) = 1− 0 = 1 = (−1)1+1

(
1

1

)
.

For d ≥ 2, by multiplicity of the virtual Poincaré polynomial,

β((R∗)d; t) = (β(R∗; t)d = (−1 + t)d =

d∑

i=0

(−1)d+i

(
d

i

)
ti,

hence βi((R∗)d = (−1)d+i
(

d
i

)
. �

2.3.7 Corollary: Let X be a d-dimensional toric variety assigned to
a fan Σ. Then for i = 0, . . . , d

β(X; t) =

d∑

k=0

(t− 1)d−k#Σ(k),

so

βi(X) =
d−i∑

k=0

(−1)d−i−k

(
d− k

i

)
#Σ(k).

Proof: X is a disjoint union of torus orbits:

X =
⋃

σ∈Σ

Oσ,

with Oσ
∼= (R∗)d−dim(σ). So by the additivity of the virtual Poincaré

polynomial

β(X; t) =
∑

σ∈Σ

β(Oσ; t) =
d∑

k=0

∑

σ∈Σ(k)

β((R∗)d−k); t)

=

d∑

k=0

(t− 1)d−k#Σ(k).

Taking the coefficient of ti as βi(X) yields the statement.
�
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2.3.8 Proposition: Let X be a toric variety defined by a rational
polytope ∆. Then the Euler characteristic of X defined as in this
section is equal to the Euler characteristic defined as in section 1.1,
where X is viewed as polytopal complex.

Proof: As in both definitions the Euler characteristic is additive, it is
enough to show the assertion for the affine space. So let X := (R∗)d

for some d ≥ 0. As H i
c(R

d,Z/2Z) = 0 for i = 0, . . . , d − 1 and
Hd

c (Rd,Z/2Z) ∼= Z/2Z we have χ(X) = (−1)d (using the above def-
inition).

On the other hand we can view X as toric variety to the poly-

tope ∆ = (R≥0)
d. ∆ has exactly

(
d
k

)
k-dimensional faces. Each

k-dimensional face has exactly 2k copies in X. So

χ(X) =

d∑

k=0

(−1)k2k

(
d
k

)
= (−1)d,

which coincides with the above result. �
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III Real Local Toric
Calabi-Yau Varieties

3.1 Definition

Let d be a positive integer, Θ a lattice polytope in Rd−1 and T a
unimodular coherent lattice triangulation of Θ. For each simplex σ ∈ T
let cone(σ) be the cone generated by σ × {1} ⊂ Rd. Let Σ be the d-
dimensional fan consisting of all such cones. We call Σ the fan over
T .

The d-dimensional real toric variety XΣ associated with this fan
is called a real local toric Calabi-Yau variety (real toric K3 surface, if
d = 2).

If T is an arbitrary (d−1)-dimensional complex of lattice simplizes,
then the analogously constructed real toric variety will be called gen-
eralized real local toric Calabi-Yau variety.

Remark: As we will explain in the next chapter, real local toric Calabi-
Yau varieties occur as resolution of singularities in the construction of
compact Calabi-Yau. For generalized real local Calabi-Yau varieties
this is not true anymore. They will instead occur mainly as interme-
diate steps in induction proofs of this chapter. But since many results
on real local Calabi-Yau varieties stated in terms of the combinatoric
description of the triangulation can easily be extended to greater gen-
erality, we will do so, where it seems appropriate to us.

Example: We fix a natural number n ≥ 1. Θ := [0, n] is a one-
dimensional lattice polytope, which has a unique maximal lattice tri-
angulation (which is the subdivision into intervals of length one). The
fan over it is seen in figure 3.10.

61
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Figure 3.10: The fan Σ for n = 4

3.2 General Results

In this section we calculate the Euler characteristic and virtual Betti
numbers of generalized real local toric Calabi-Yau varieties. If the vari-
eties are non-generalized, we construct a natural compactification and
determine the number of boundary components. We conclude with the
conjectures that in all dimensions the classical Betti numbers coincide
with the virtual ones and that they are independent of the triangulation
of the defining lattice polytope.

3.2.1 Proposition: A generalized real local toric Calabi-Yau variety
is smooth if and only if it is defined by a unimodular simplicial lattice
complex. In particular (non-generalized) real local toric Calabi-Yau
varieties are smooth.

Proof: This follows immediately from the definitions. �

3.2.2 Proposition: A generalized real local toric Calabi-Yau variety
has trivial canonical class.

Proof: Let XΣ be a generalized real local toric Calabi-Yau variety,
associated with the fan Σ. It was stated in proposition 2.1.9 that K =
−

∑
ρ∈Σ(1)Dρ is a canonical divisor (where the Dρ = Oρ denote the

primitive invariant Weil-divisors). In this case, all generators of the
rays (which we also denote with ρ) lie on the affine hyperplane {u = 1},
where u ∈ (Rd)∨ is the d-th coordinate form. We can also view u
as a rational function on XΣ, giving rise to a principal divisor D =∑

ρ∈Σ(1)〈u, ρ〉Dρ. Obviously D = −K, so K is principal. �

3.2.3 Proposition: Any smooth real algebraic variety with trivial canon-
ical class is an orientable smooth manifold.

Proof: Let X be a smooth real algebraic variety. It is well-known (and
follows from the implicit function theorem) that X is also a smooth real
manifold. Therefore it suffices to show that X is orientable.
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The fact that the canonical class of X is trivial is equivalent to the
existence of a rational n-form ω ∈ Ωn(X) without zeros and poles. For
each x ∈ X we define an orientation class depending smoothly on x in
the following way:

Let x1, . . . , xd be local coordinates in an open subset U ⊂ X, in
which ω can be written as

ω(x1, . . . , xd) = f(x1, . . . , xd) dx1 ∧ . . . ∧ dxd

for a real-valued rational function f (X can be covered by such sets).
By construction, f has neither zeros nor poles.

For each point in U with coordinates (x1, . . . , xd) this determines
an ordered base

B(x1, . . . , xd) := f(x1, . . . , xd)
( ∂

∂x1
, . . . ,

∂

∂xd

)

of the tangent space of U at this point and so determines also an ori-
entation class. It is clear, that this assignment is continuous. We show
that it is independent of the choice of local coordinates and so can be
extended to the whole manifold X:

If y1, . . . , yd are other local coordinates, then

(
∂

∂x1
, . . . ,

∂

∂xd
) = (

∂

∂y1
, . . . ,

∂

∂yd
)A

for a nonsingular d× d-matrix A = (aij)ij, with aij = ∂yi

∂xj
.

In the new coordinates we have

ω(y1, . . . , yd) = f̃(y1, . . . , yd)dy1 ∧ . . . ∧ dyd

with
f̃(y1, . . . , yd) = det(A)f(x1, . . . , xd)

with the same matrix A as above (the xi are hereby considered as
functions of y1, . . . , yd). So,

f(x1, . . . , xd)(
∂

∂x1
, . . . ,

∂

∂xd
) = f̃(y1, . . . , yd)(

∂

∂y1
, . . . ,

∂

∂yd
)

A

det(A)

and as det
(

A
det(A)

)
= 1, we have shown that the choice of orientation

class does not depend on the choice of local coordinates, which con-
cludes the proof. �

3.2.4 Corollary: Let X be a smooth generalized real local Calabi-Yau
variety. Then X is a connected orientable real manifold consisting.
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Proof: Let Σ be the fan defining X. As it contains a fulldimensional
cone, proposition 2.2.2 yields, that X is connected. Together with the
two previous results, the assertion now follows. �

3.2.5 Proposition: Let d be a positive integer and T a (d−1)-dimen-
sional simplicial lattice complex in Rd. Let X be the associated gen-
eralized real local Calabi-Yau variety. Then its Euler characteristic
amounts to

χ(X) = (−2)d +

d−1∑

k=0

(−2)d−1−k#T (k).

If T is a unimodular triangulation of a lattice polytope Θ, then the
Euler characteristic can be expressed as

χ(X) = Q(Θ;−1),

where Q(Θ; t) is the polynomial defined in section 1.2. In particular, it
is independent of the actual choice of triangulation.

For low dimensions and smooth varieties the formula for the Euler
characteristic can be simplified in the following way:

a) For d = 2 and Θ = [0, n]: χ(X) = 2− n.

b) For d = 3: χ(X) = l(∂Θ)−4, where l(∂Θ) designates the number
of lattice points in ∂Θ.

c) For d = 4: χ(X) = 1
2
vol(∂Θ) + κ(Θ) − 5l(Θ) + 13, where κ(Θ)

designates the number of edges in a unimodular triangulation of Θ.

Proof: Let Σ be the fan over T (so X = XΣ). We consider the
decomposition of X into orbits under the action of the torus (R∗)d:

X =
•⋃

σ∈Σ

Oσ.

If σ is k-dimensional, then Oσ is isomorphic to the (d− k)-dimensional
torus and consists of 2d−k connected, contractible components. So

χ(X) =
d∑

k=0

(−1)d−k
∑

σ∈Σ(k)

2d−k

= (−2)d #Σ(0) +
d∑

k=1

(−2)d−k #Σ(k)

which is equal to the claimed formula, as Σ(0) = {0} and #Σ(k+ 1) =
#T (k) for all k ≥ 0 by the construction of the fan.
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Now assume that T is a unimodular triangulation of a lattice poly-
tope Θ. By proposition 1.2.13 the Q-polynomial of Θ can be written
as

Q(Θ; t) = (t− 1)d +
d−1∑

k=0

#T (k) (t− 1)d−1−k.

It is easy to verify that for t = −1 this is equal to the above formula
for the Euler characteristic of X. As the definition of the Q-polynomial
does not involve any triangulation, the Euler characteristic is indepen-
dent of it.
Now we consider the special cases. For commodity, we set fk := #T (k)
for k = 0, . . . , d− 1.

If d = 2 then the above formula yields

χ(X) = 4− 2f0 + f1 = 2− f1

= 2− n

as f0 = f1 + 1 and f1 = n.
Now let d = 3: The above formula yields

χ(X) = −8 + 4f0 − 2f1 + f2

= −6 + 2f0 − f2,

where we have used the Euler formula f0 − f1 + f2 = χ(Θ) = 1 to
make the f1-term disappear. We can further simplify this result using
the formula of proposition 1.2.10 for triangulations of two-dimensional
convex polytopes:

f2 = f0 + f ∗
0 − 2,

where
f ∗

k := #{σ ∈ T (k)|σ ∈ Int(Θ)}.

Applying this formula to a unimodular triangulation yields vol(Θ) =
l(Θ) + l∗(Θ)− 2, where l∗(Θ) = #(IntΘ ∩ Z2). So,

χ(X) = l(Θ)− l∗(Θ)− 4

= l(∂Θ)− 4.

For d = 4 the same type of calculation leads to

χ(Θ) = −f3 + 2f1 − 6f0 + 14.

This result can be slightly simplified to the assertion using the for-
mula of prop. 1.2.10 for triangulations of 3-dimensional polytopes:

2f3 = −f∂
2 + 2f1 − 2f0 + 2.

�
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3.2.6 Proposition: Let T be a (d − 1)-dimensional simplicial lattice
complex and X the d-dimensional generalized real local Calabi-Yau
variety defined by it. Then the virtual Poincaré polynomial of X can
be calculated as

β(X; t) = (t− 1)d +
d−1∑

k=0

(t− 1)d−1−k#T (k).

The individual Betti numbers are

βi(X) = (−1)d−i

(
d

i

)
+

d−1−i∑

k=0

(−1)d−1−i−k

(
d− 1− k

i

)
#T (k)

for i = 0, . . . , d. In particular,

β0(X) = 0,

βd(X) = 1.

If T is a unimodular triangulation of a lattice polytope Θ, then the
virtual Poincaré polynomial of X is equal to the Q-polynomial of Θ,
that is

β(X; t) =
d∑

i=0

βi(X)ti = Q(Θ; t).

In particular, the virtual Betti numbers are independent of the actual
choice of triangulation.

Proof: The formula for the virtual Poincaré polynomial is a direct
consequence of the orbit decomposition of X and the additivity of the
virtual Poincaré polynomial (see also proposition 2.3.7). Its coefficients
can easily be calculated to give the virtual Betti numbers as stated
above.

By putting i = d we get immediately

βd(X) = (−1)2d

(
d

d

)
= 1.

For i = 0 we get

(−1)dβ0(X) =

(
d

0

)
−

d−1∑

k=0

(−1)k

(
d− 1− k

0

)
T (k)

= 1− χ(Θ)

= 0.
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If T is a unimodular triangulation of Θ, then it is easy to verify, that
the virtual Betti polynomial coincides with the Q-polynomial of Θ as
described in proposition 1.2.13. �

3.2.7 Theorem: Let Θ ⊂ Rd−1 be a (d− 1)-dimensional lattice poly-
tope and T a unimodular coherent triangulation of Θ. Let X be the
real local toric Calabi-Yau variety defined by these.

Then X is a quasi-projective algebraic variety. Let X be the com-
pactification of X, constructed as d-dimensional polytopal complex as
described in definition section 1.1, so that X is p.l. homeomorphic to
X\∂X.

Then X is a d-dimensional PL-manifold with boundary. ∂X is a
(d − 1)-dimensional closed PL-manifold. It has 2d−1−dim2 ∂Θ compo-
nents, where dim2 ∂Θ = dim2 ∂T is the dimension of the affine F2-
subvectorspace of (Z/2)d−1 generated by the lattice points of ∂Θ.

Proof: Any piecewise affine-linear map on T gives rise to a piecewise
linear map on the fan Σ over T by linear continuation. So according to
proposition 2.1.12 Σ is the normal fan of an unbounded polytope ∆ and
X is a quasi-projective algebraic variety. Topologically, by proposition
2.2.4, X is the realization of a polytopal complex obtained by glueing 2d

copies of ∆ along their faces and X is the result of the induced glueing
of copies of ∆, where ∆ is the closure of ∆. Let Γ be the closing facet
of ∆ (recall that ∆ is combinatorially equivalent to ∆\Γ), then ∂X is
the result of the induced glueing of the copies of Γ. As Γ is bounded,
∂X is compact.

We further know, that the facets of Γ are in one-to-one correspon-
dence to the vertices of the triangulation of ∂Θ. So, if F is the facet
corresponding to v ∈ ∂Θ ∩ Zd and {F (ξ) | ξ ∈ Hom(Zd, {±1})} are the
copies of it, then F (ξ) is identified with F (ξ′) if and only if ξ = v̂ · ξ
(where v̂ ∈ Hom(Zd, {±1}) is the homomorphism defined by v respec-
tively v ∈ (Z/2)d) (see section 1.2 for the definition). So every copy of
a facet has a “glueing partner” and ∂X has no boundary.

We further deduce that Γ(ξ) and Γ(ξ′) are in the same component of
∂X if and only if ξ = ĝξ′ for some g ∈ G :=< v | F is a facet of Γ >
(where G is a subgroup of (Z/2)d. So the components of ∂X are in
1-1-correspondence with elements of (Z/2)d/G. As all these groups are
naturally F2-vector spaces, so this number is equivalently described by
2dimF2

(F2)d/G.

Let ∂Θ ∩ Zd = {v0, . . . , vs}. Then
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(F2)
d/G ∼=

(
(F2)

d/v0F2

)
�

(
G/v0G

)

∼= (F2)
d−1/H,

where H =< v1 − v0, . . . , vs − v0 >F2, which is a subvectorspace of
(F2)

d−1. As dimH = dim2 ∂Θ, the assertion follows.

By proposition 3.2.1 X is smooth and thus by proposition 2.2.7 we
know that X, X and ∂X are PL-manifolds.

�

3.2.8 Proposition: If d = dimX is odd, then

χ(∂X) = −2χ(X)

(meanwhile if d is even, then χ(∂X) = 0).

Proof: We use the fact that because of Poincaré-duality the Euler
characteristic of an odd-dimensional closed smooth manifold is zero. If
d is even, then ∂X is odd-dimensional so its Euler characteristic is zero.
If d is odd, then we can glue two copies of X along the boundary. The
resulting manifold is closed and consists of two copies of X and one of
∂X . As the Euler characteristic is additive we get

0 = 2χ(X) + χ(∂X),

hence the desired result. �

3.2.9 Proposition: The Euler characteristic of the boundary can also
be calculated as

χ(∂X) = 2
[
(−2)d−1 +

d−2∑

k=0

(−2)d−2−k#∂T (k)
]
,

where ∂T is the induced triangulation of ∂Θ.

Proof: ∂X is by construction the realization of a polytopal complexK,
which consists of 2k+1 copies of each k-dimensional face of a polytope
Γ (for k = 0, . . . , d− 1). These faces are in one-to-one correspondence
to the (d − 2− k)-dimensional elements of T , except for the 2d copies
of Γ itself. So,
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χ(∂X) = χ(K)

= 2d(−1)dim Γ +
∑

F∈K

2k+1(−1)dim F

= 2d(−1)d−1 +
∑

σ∈T

2d−1−dimσ(−1)d−2−dim σ

= 2
[
(−2)d−1 +

d−2∑

k=0

(−2)d−2−k#∂T (k)
]
.

�

Remark: Proposition 3.2.5 on one hand and propositions 3.2.8 and
3.2.9 on the other hand yield two different possibilities to calculate the
Euler characteristic of an odd-dimensional real local toric Calabi-Yau
variety. This is not only useful for finding the simplest representation of
the Euler characteristic for a given degree, but also makes it possible to
deduce some relations between the numbers of simplizes in a unimodu-
lar coherent triangulation of a lattice polytope. For example, the proof
of prop. 3.2.5b makes use of the formula (∗) vol(Θ) = l(Θ)+l∗(Θ)−2 for
2-dimensional lattice polytopes, but we could also have derived 3.2.5b
from 3.2.5a by means of propositions 3.2.8 and 3.2.9 and thus providing
a proof for (∗).

In analogous manner, for d odd the Euler characteristic of a d-
dimensional real local toric Calabi-Yau variety can always be derived
from the formula of the (d − 1)-dimensional varieties. We will show
how this works out for d = 5 and derive a not obvious relation for the
combinatorics of a 4-dimensional lattice polytope.

It is convenient to replace the Euler characteristic by an invariant
which makes not only sense for triangulations of lattice polytopes but
also for more general simplicial complexes. We choose the definition in
such a way that the invariant has the property of being additive (in an
appropriate sense).

3.2.10 Definition: Let T be any m-dimensional simplicial complex.
Then we define

γ(T ) :=
∑

σ∈T

(−2)m−dim(σ) =
m∑

k=0

(−2)m−k#T (k).
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3.2.11 Proposition: Let T , T ′ be two m-dimensional simplicial com-
plexes, such that T ∩ T ′ is a l-dimensional simplicial complex (with
l ≤ m). Then

γ(T ∪ T ′) = γ(T ) + γ(T ′)− (−2)m−l γ(T ∩ T ′).

Proof: This can be verified in a straightforward way. �

3.2.12 Proposition: Let Θ be a (d− 1)-dimensional lattice polytope,
T a unimodular coherent triangulation of it, X the associated real local
toric Calabi-Yau variety and X the closure of it. Then

χ(X) = (−2)d + γ(T ),

χ(∂X) = −(−2)d + 2γ(∂T ).

Furthermore, for d odd

γ(T ) = (−2)d−1 − γ(∂T ),

whereas for d even

γ(∂T ) = −(−2)d−1.

Proof: The formulas are just reformulations of propositions 3.2.5, 3.2.9
and 3.2.8 in terms of the γ-invariant. �

3.2.13 Proposition: Let T be a unimodular coherent triangulation
of a (m+ 1)-dimensional lattice polytope for some nonnegative integer
m (so |T | ∼= Sm). If m is even, then

γ(T ) = −(−2)m+1.

If m is odd and U1, U2 are subcomplexes of T such that

• T = U1 ∪ U2,

• |U1|, |U2| ∼= Bm,

• |U1 ∩ U2| ∼= Sm−1,

then

γ(T ) = γ(U1) + γ(U2) + (−2)m+1.
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Proof: If m is even, then |T | is the boundary of an odd-dimensional
lattice polytope. By the previous proposition (with d = m+ 2)

γ(T ) = −(−2)m+2−1 = −(−2)m+1.

If m is odd, then by the additivity of γ

γ(T ) = γ(U1) + γ(U2) + 2γ(U1 ∩ U2)

= γ(U1) + γ(U2)− 2(−2)m

= γ(U1) + γ(U2) + (−2)m+1.

�

Remark: A typical subdivision of the above type would be the division
of a sphere into its hemispheres.

3.2.14 Proposition: Let Θ be a (d− 1)-dimensional lattice polytope
with d odd and T a unimodular coherent triangulation of it. Let U1,U2

be subcomplexes of ∂T with the same properties as in the previous
proposition (with ∂T instead of T ). Then

γ(T ) = −
[
γ(U1) + γ(U2)

]
.

Proof: Using the previous results,

γ(T ) = (−2)d−1 − γ(∂T )

= (−2)d−1 −
[
γ(U1) + γ(U2) + (−2)d−1

]

= −
[
γ(U1) + γ(U2)

]
.

�

3.2.15 Corollary: Let Θ be a 4-dimensional lattice polytope, T a
unimodular coherent triangulation of it and X the 5-dimensional real
local Calabi-Yau variety defined by these. Then

χ(X) = −κ(∂Θ) + 5l(∂Θ)− 16.

Proof: Let U1 and U2 be subcomplexes of ∂T such that

• ∂T = U1 ∪ U2,

• |U1|, |U2| ∼= B3,

• |U1 ∩ U2| ∼= S2,
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It is obvious, that such a subdivision can always be achieved. Further-
more, we can assume without loss of generality, that U1 and U2 are com-
binatorially equivalent to unimodular triangulations of 3-dimensional
lattice polytopes U1 and U2 respectively. So

γ(T ) =−
[
γ(U1) + γ(U2)

]

=−
[1

2
vol(∂U1) + κ(U1)− 5l(U1)− 3

]

−
[1

2
vol(∂U2) + κ(U2)− 5l(U2)− 3

]

=− vol(U1 ∩ U2)− κ(∂Θ)− κ(U1 ∩ U2) + 5l(∂Θ) + 5l(U1 ∩ U2) + 6

=− κ(∂Θ) + 5l(∂Θ) + 6− vol(U1 ∩ U2)− κ(U1 ∩ U2) + 5l(U1 ∩ U2)

=− κ(∂Θ) + 5l(∂Θ) + 6− 2vol(U1 ∩ U2) + 4l(U1 ∩ U2) + 2,

where for the first equality we have used proposition 3.2.5 and for the
last one the Euler formula for U1 ∩U2. From a previous proposition we
have

γ(U1 ∩ U2) = vol(U1 ∩ U2)− 2κ(U1 ∩ U2) + 4l(U1 ∩ U2) = 8

or, equivalently

−vol(U1 ∩ U2) + 2l(U1 ∩ U2) + 4 = 8.

Thus we get

γ(T ) = −κ(∂Θ) + 5l(∂Θ) + 8 + 8,

and
χ(X) = (−2)5 + γ(T ) = −κ(∂Θ) + 5l(∂Θ)− 16.

�

3.2.16 Corollary: Let Θ be a 4-dimensional lattice polytope that ad-
mits a unimodular triangulation. Then

vol(Θ) = 2µ(Θ)− 5κ(Θ) + 9l(Θ)− 14,

where µ(Θ) is the number of 2-dimensional simplizes in any unimodular
triangulation of Θ.

Proof: Let T be a unimodular coherent triangulation of Θ and X the
associated real local toric Calabi-Yau variety. As the above formula for
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the Euler characteristic of X and that from proposition 3.2.5 must give
the same result we get the equality

−κ(∂Θ) + 5l(∂Θ)− 16 = −32 + 16l(Θ)− 8κ(Θ) + 4µ(Θ)− 2ν(Θ) + vol(Θ)

= −30 + 14l(Θ)− 6κ(Θ) + 2µ(Θ)− vol(Θ),

where ν(Θ) is the number of 3-dimensional simplizes in any unimodular
triangulation of Θ. The statement follows immediately by solving the
equation for vol(Θ).

�

Real local toric Calabi-Yau varieties that are bundles

Subsequently we will consider the following special situation: T is
a unimodular coherent triangulation of a (d − 1)-dimensional lattice
polytope Θ such that

σ0 :=
⋂

σ∈T (d−1)

σ

is a nonempty simplex. By translation we can always achieve that the
origin is a vertex of σ0, so let v1, . . . , vn be the remaining vertices (with
n = dim(σ0)). By assumption, these are part of a Z-basis of Zd−1,
say v1, . . . , vd−1. By applying a lattice transformation we can always
assume that it is the canonical basis, in particular 〈vi, vj〉 = 0 for i 6= j.

Let N0 be the lattice generated by v1, . . . vn and N ′ the lattice gen-
erated by vn+1, . . . , vd−1. Let pr′ : Zd−1 → N ′ be the projection along
this basis:

pr′
(d−1∑

k=0

akvk

)
:=

d−1∑

k=n+1

akvk.

Let Σ′ be the fan in N ′ consisting of all cones generated by some
pr′(σ), σ ∈ T . The following facts are easy to verify:

(i) pr′ maps v1, . . . , vn to 0,

(ii) pr′ induces a bijection between T (0)\(σ0 ∩ Zd−1) to generators of
the rays of Σ′,

(iii) Σ′ is a smooth fan.

Note, that unimodularity of the triangulation is required for (ii) and
(iii) to be true.

Examples: See figures 3.11 and 3.12.
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Figure 3.11: Triangulation of Θ and the fan Σ′ where σ0 is 0-
dimensional

Figure 3.12: Triangulation of Θ and the fan Σ′ where σ0 is 1-
dimensional

We define the following functions

νi : Σ′(1) −→ Z

ρ′ 7→ ρi,

for i = 1, . . . , n, where we set (pr′)−1(ρ′) =: ρ =
∑d−1

k=0 ρkvk and, as
before, we identify rays of a fan and their generator.

3.2.17 Proposition: In the situation described above, XΣ is a (n+1)-
dimensional vector bundle over XΣ′ , which can be written as a direct
sum of line bundles in the following way:

(1−
n∑

i=1

νi)⊕
n⊕

i=1

νi.

In particular, if n = dim σ0 = 0, then XΣ is the anticanonical bundle
over XΣ′ .

Proof: We identify Zd−1 with Zd−1 × {1} ⊂ Zd, so that {v0, . . . , vd−1}
forms a Z-basis of Zd. If a =

∑d−1
k=1 akvk ∈ Zd−1, then a = v0 +∑d−1

k=1 ak(vk−v0) in Zd. We further note that 〈vi, vj〉Zd = 1+〈vi, vj〉Zd−1

for all i, j.
Clearly pr′ extends to Zd in a natural way. It is also easy to verify

that Σ′ can be described as

Σ′ = {pr′(σ) | σ ∈ Σ}.
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We define a new basis ṽ0, . . . , ṽd−1 by setting

ṽ0 := v0,

ṽi := vi − v0 for i = 1, . . . , d− 1.

Let p̃i be the respective projections to the i-th coefficient in that basis.
It is easy to verify that {ṽ0, . . . , ṽd−1} forms an orthonormal basis

and that a ∈ Zd−1 × {1} if and only if p̃0(a) = 1.
Let Σ̃ be the fan obtained from Σ by applying the lattice transfor-

mation mapping vi to ṽi for all i = 0, . . . , d − 1. As pr′(v0) = 0 and
hence pr′(ṽi) = pr′(vi) for all i we get

• Σ̃ = {pr′(σ̃) | σ̃ ∈ Σ̃},

• pr′ maps ṽ0, . . . , ṽn to 0,

• pr′ induces a bijection between Σ̃(1)\{ṽ0, . . . , ṽn} and Σ′(1).

Σ̃ fulfills all properties of the fan of a direct sum of line bundles over
XΣ′ as described in proposition 2.1.13. Indeed, Σ̃ is smooth and gen-
erated by its rays (as Σ is) and (pr′)−1(0) ∩ Σ̃(1) = {ṽ0, . . . , ṽn} are
orthonormal. So according to proposition 2.1.13 the line bundles in
question are described by the following functions

ν̃i :Σ′(1) −→ Z

ρ′ 7→ p̃i(ρ̃)

for i = 0, . . . , n, where ρ′ = pr′(ρ̃) (see also the commutative diagram
in figure 3.13 ). If ρ̃ is the image of ρ = v0 +

∑
ρk(vk−v0) ∈ Σ(1), then

ν̃i(ρ
′) = p̃i

(
ṽ0 +

d−1∑

k=1

ρk(ṽk − ṽ0)
)

=

{
1−

∑d−1
k=1 ρk, i = 0,

ρi, i 6= 0

=

{
1−

∑n
k=1 νk(ρ

′) +
∑d−1

k=n+1 ρk, i = 0,

νi(ρ
′), i 6= 0,

so ν̃i = νi for i = 1, . . . , n. As the line bundles over XΣ′ defined by
the maps ρ′ 7→ ρk, k ∈ {n+ 1, . . . , d− 1}, are isomorphic to the trivial
line bundle, the line bundle described by ν̃0 is equivalent to the one
described by 1−

∑n
k=1 νk. So XΣ̃ is a sum of line bundles of the desired

form, and hence also XΣ, which is related to XΣ̃ by a toric isomorphism.
�
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Figure 3.13: Diagram of maps

Example: Let ∆ be a lattice polytope consisting of two unimodu-
lar simplizes with a common facet. Then Σ′ is the fan belonging to
RP1, so XΣ′ is topologically a circle. Over a circle there are only two
topologically different vector bundles of a fixed dimension: the trivial
bundle and a “Möbius type” one, which is not orientable. So it follows
that XΣ

∼= S1 × Rd, regardless of how the two simplizes are actually
arranged.

3.2.18 Proposition: If σ0 ∩ Int(Θ) 6= ∅, the virtual Betti numbers
and the non-virtual Betti numbers coincide.

Proof: It is well-known and can be shown elementary using a triangu-
lation {∆i} of XΣ′ and a triangulation of XΣ which is a subdivision of
{∆i ×R}, that

H i
c(XΣ′ ,Z/2) ∼= H i+1

c (XΣ,Z/2)

for all i and hence bi(X ′
Σ) = bi+1(XΣ).

On the other hand, for the virtual Poincaré polynomial,

β(XΣ; t) = β(
•⋃

σ∈Σ

Oσ; t)

= β(
•⋃

σ′∈Σ′

(Oσ′ ×R); t)

= β(XΣ′; t)β(R; t)

= tβ(XΣ′; t).

So, βi(XΣ′) = βi+1(XΣ) for all i.
Σ′ is a complete and smooth fan, so XΣ′ is nonsingular and compact.

Hence the virtual and non-virtual Betti numbers coincide on XΣ′ and
thus also on XΣ. �
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3.2.19 Conjecture: Let X be a real local toric Calabi-Yau variety.
Then the virtual and non-virtual Betti number of X coincide, that is

βi(X) = bi(X)

for all i ≥ 0.

Remark: There is some evidence to the conjecture, given by the above
result and the fact, that the conjecture is true for dimensions 3 and less
(as we will show in the subsequent sections). Furthermore, virtual
and non-virtual Betti numbers coincide for i = 0 and i = dimX, as
β0(X) = b0(X) = 0, βdimX(X) = bdim X(X) = 1.

If the conjecture were true, it would not only yield an easy way for
computing the (non-virtual) Betti numbers of a smooth real local toric
Calabi-Yau variety, but it would also impose, that they are independent
of the triangulation defining the variety.

So, a weaker form of the above conjecture is the following:

3.2.20 Conjecture: The Betti numbers of a real local toric Calabi-
Yau variety depend only on the lattice polytope used for its definition
and not on its triangulation.

3.3 2-Dimensional Varieties

3.3.1 Theorem: Let d = 2, Θ = [0, n] and let XΣ be the correspond-
ing real local toric Calabi-Yau variety. Then XΣ is homeomorphic to
Tg\{k pts.} with

{
g = n−1

2
, k = 1, n odd

g = n
2
− 1, k = 2, n even.

Thereby Tg denotes the orientable closed surface of genus g ≥ 0.

Proof: Let XΣ be the compactification of XΣ. The boundary of XΣ

is a closed 1-dimensional manifold, so it consists of a finite number k
of circles. To each circle we can attach a disc. The result is a smooth
closed, still orientable, manifold of dimension 2. We denote it with
Tg, where g is its genus. Then it is clear by the construction, that
XΣ is homeomorphic to Tg \{k pts.}, so it remains to determine the
parameters g and k.

If n is even then {0, n} = ∂Θ generates the subgroup {0} ⊂ Z/2
of index 2. So by theorem 3.2.7 k = 2. If n is odd, then the full
group Z/2 is generated, so the index, and also k, is 1. Using the
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Euler characteristic of XΣ, which gives a further relation between the
parameters of the construction, we get

χ(XΣ) = 2− n = χ(Tg)− k · χ( pt.) = 2− 2g − k.

Substituting the respective values for k in the two cases, the assertion
follows. �

Remark: When augmenting the parameter of the construction n by
1, two different things can happen: If n is odd, then the number of
“holes” in X (that means the parameter k), augments from one to two.
If n is even, then the number of holes decreases from two to one and
the genus increases by one. This different behavior is quite interesting
in view of the fact that the difference between the two surfaces is in
both cases identical, namely a one-dimensional torus orbit. Figures
3.14 and 3.15 give a sketch where this additional orbit is placed with
respect to the surface (note that in figure 3.14 the surface is represented
by its fundamental polygon). In both cases it “materializes” in some
part of the boundary circle(s) of X (more precisely, of X), connecting
two formerly distant regions of X. The effect of this process is in one
case a division of the hole (fig. 3.14, in the other case a “bending” of
the surface to form an additional handle, meanwhile the two holes get
“connected” to form a single one (fig. 3.15).
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Figure 3.14: Change when passing from n to n+ 1, where n is odd

Figure 3.15: Change when passing from n to n+ 1, where n is even
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3.4 3-Dimensional Varieties

In the following we calculate the homology and cohomology groups of
a 3-dimensional real local toric Calabi-Yau variety by using the rep-
resentation of the fundamental group with generators and relations as
described by V. Uma ([Uma]). Let X be such a variety. We introduce
the following notation:

We write H1(X,Z) for π1(X)/[π1, π1]. Then for the cohomology
group with compact support we have H2

c (X,Z) ∼= H1(X,Z). We show
that H2

c (X,Z/2) is independent of the triangulation of the defining
lattice polytope of the variety (whereas with integral coefficients it is
not). As the same is valid for the Euler characteristic, we can calculate
all Betti numbers in terms of the defining lattice polytope.

3.4.1 Theorem: Let X be a 3-dimensional real local Calabi-Yau va-
riety, assigned to a lattice polytope Θ ⊂ R2 and a unimodular coherent
triangulation T . Then H1(X,Z) ∼= Zr × (Z/2)s, where r, s are nonneg-
ative integers such that r + s+ 3 = l(Θ) = #T (0). Furthermore,

s = #{v ∈ T (0) | v ∈ Int(Θ)} −#{v ∈ T (0) | star(v) is of type IIa},

where star(v) is said of type IIa, if dim2(∂(star(v))) = 1 and of type
IIb otherwise (this designation will become clear in the proof).
For bi := dimH i

c(X,Z/2) we have

b0 = 0,

b1 = l(Int Θ),

b2 = l(Θ)− 3,

b3 = 1.

Remark: The numbers r and s depend on the triangulation as can be
seen in the following example, whereas the Betti numbers are indepen-
dent.

If v is an interior vertex of the triangulation, then there is mainly
only one type of complex which can be a star of type IIa. It consists
of four triangles as seen in figure 3.19. The other possibilities are de-
rived from this one by a change of basis and translating the vertices by
elements in (2Z)2.

Example: Consider the following two triangulations of the same poly-
tope:
In the first example, H1(X1) ∼= Z3. In the second example, H1(X2) ∼=
Z2 × Z/2.
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Figure 3.16: Triangulation A Figure 3.17: Triangulation B

Proof: If in the first example we leave out the upper left simplex the
corresponding real local toric Calabi-Yau variety is homeomorphic to
the trivial line bundle over P1×P1, hence has fundamental group Z2. As
we will see in the proof of the theorem, addition of one more simplex as
in this example leads to one more free variable, so H1(X1) ∼= Z2 ×Z =
Z3.

The second example is a (nontrivial) line bundle over the non-
oriented surface of genus −1 (a projective plane with one handle), so
they both have first homology group Z2 × Z/2. �

For the proof of the theorem we will need the following preliminary
result:

3.4.2 Proposition: Let Θ ⊂ R2 be a lattice polytope and T a lattice
triangulation (not necessarily unimodular). Then there is a numbering
σ0, . . . , σn for the triangles in T , such that for any i ∈ {1, . . . , n} the
triangle σi is attached to Θi−1 :=

⋃i−1
j=0 σj in one of the following ways:

I) σi has exactly one additional vertex and two additional edges (so
Θi−1 and σi have one common edge).

II) σi has no additional vertices and exactly one additional edge.

Proof: Clearly we can choose a numbering on T , such that all Θi

consist of one component.
In a first step we show that we can further choose the triangles in

such a way that the Euler characteristic is always preserved, that is, all
Θi are contractible.

If this were not the case, say χ(Θi−1) = 1 and χ(Θi) ≤ 0 for some i
(the Euler characteristic cannot become larger, as the Θi have only one
component), the boundary ∂Θi would have several components, which
are circles. Let us denote the components that bound compact sets in
the complement (in R2) of Θi by S1, . . . ,St. In the following we will call
them inner boundaries, in contrast to the outer boundary that bounds
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Figure 3.18: Attachment I) Figure 3.19: Attach-
ment II)

a non-compact part of the complement. As Θ is convex, the inner
boundary components respectively bound non-empty subcomplexes of
T , which we denote by B1, . . . ,Bt. Let mk be the number of simplizes
in Bk for k = 1, . . . , t and assume that m1 is the smallest of them.

We choose σi in such a way that the resulting m1 is minimal among
all choices. Then we replace σi by any σ̃i ∈ B1 with σ̃i ∩S1 6= ∅ (such a
simplex must exist as Θ is convex). As B1\{σ̃i} has less simplizes than
B1, by assumption on the minimality Θ̃i := Θi−1∪ σ̃i cannot have inner
boundary, so it has Euler characteristic 1.

There remain just three possibilities to attach a simplex σi to an al-
ready constructed Θi−1 (the number of additional edges must exceed the
number of additional vertices by 1). Apart from the already mentioned
constructions I) and II), one can add a simplex with two additional
vertices and three additional edges (see figure 3.20). Set R = σi∩Θi−1,
let Q be a second vertex of σi, and T the lattice point on ∂Θi−1 that
is joined to R by an edge and lies “on the side of Q”. By convexity of
Θ the triangle RQT lies in Θ. In particular, it contains a triangle of
T having edge RT and not lying inside Θi−1. So we can proceed the
numbering with a triangle, which falls into category I).

�

Remark: Note that the two triangles having a common edge with the
new triangle, cannot be “isolated”, but must each have at least one
further common edge with a triangle in Θi−1 (this is easily seen by
induction).

Proof of the theorem: In the proof we will have to analyze the
representation of the fundamental group of X as given by Uma (see
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Figure 3.20: Attachment with two new vertices and three edges

proposition (2.2.3)). We recall the result in terms of the special situa-
tion treated here and thereby fix a more convenient notation: To each
lattice point P in Θ “belong” 8 generators, which we will designate
with yε1,ε2,ε3

P , where the upper index is an element of (Z/2)3. Instead
of 0 and 1 we write + and −. So a typical generator would be y+++

P .

There are relations of length one, two and four, called types (A), (B)
and (C). The relations (A) and (B) depend only on the vertices (and
relate its generators), the relations of type (C) depend on the edges and
relate the generators of the vertices belonging to it. We will use here
an additive notation to describe them as we are only interested in the
homology groups. The relations of type (B) and (C) for the situation
of an elementary triangle with vertices P , Q and R are then as follows:

Relations of type (B):

y+, ε2,ε3

P + y−, ε2 ε3

P = 0

yε1 ,+, ε3

Q + yε1 ,−, ε3

Q = 0

yε1 ,ε2 ,+
R + yε1 ,ε2 ,−

R = 0,

where (ε1, ε2, ε3) run through (Z/2)3.

Relations of type (C):

y+++
P + y−−+

P + y+−+
Q + y−++

Q = 0

y++−
P + y−−−

P + y+−−
Q + y−+−

Q = 0

y+−+
P + y−++

P + y+++
Q + y−−+

Q = 0

y+−−
P + y−+−

P + y++−
Q + y−−−

Q = 0

(PQ)
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y+++
P + y−+−

P + y++−
R + y−++

R = 0

y+−+
P + y−−−

P + y+−−
R + y−−+

R = 0

y++−
P + y−++

P + y−+−
R + y+++

R = 0

y+−−
P + y−−+

P + y−−−
R + y+−+

R = 0

(PR)

y+++
Q + y+−−

Q + y++−
R + y+−+

R = 0

y−++
Q + y−−−

Q + y−+−
R + y−−+

R = 0

y++−
Q + y+−+

Q + y+−−
R + y+++

R = 0

y−+−
Q + y−−+

Q + y−−−
R + y−++

R = 0

(QR)

From the relations of type (B) we immediately get that the number
of independent generators belonging to a point is reduced to four. Using
those with ε1 = + as representatives for the generators belonging to P ,
with ε2 = + for those belonging to Q and ε3 = + for those belonging
to R, the relations of type (C) become:

y+++
P − y+−+

P − y+++
Q + y−++

Q = 0

y++−
P − y+−−

P − y++−
Q + y−+−

Q = 0
(PQ’)

y+++
P − y++−

P − y+++
R + y−++

R = 0

y+−+
P − y+−−

P − y+−+
R + y−−+

R = 0
(PR’)

y+++
Q − y++−

Q − y+++
R + y+−+

R = 0

y−++
Q − y−+−

Q − y−++
R + y−−+

R = 0
(QR’)

The third and fourth equation of each original block become the
same as the first two (up to multiplication by -1).

The proof of the theorem is done by a type of induction by the
number of triangles in T . As we have shown in the previous proposi-
tion, we can gradually build up any convex lattice polytope Θ with its
triangulation by starting with an arbitrary triangle σ0 ∈ T and in each
step adding a triangle in the form I) or II).

The intermediate simplicial complexes may not be convex polytopes,
but we can treat them in the same manner (the corresponding varieties
are generalized real local toric Calabi-Yau varieties). So let X and
X ′ be the corresponding varieties for the subcomplexes Θi−1 and Θi,
respectively (where i ∈ {1, . . . , n}).
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There is a well defined homomorphism H1(X) → H1(X
′,Z) which

maps each generator in H1(X,Z) to “itself” (that is the generator with
the same designation in H1(X

′,Z). It is well defined because the rela-
tions forH1(X,Z) are also included in the set of relations forH1(X

′,Z).

In the case that Θi differs from Θi−1 by a construction of type I)
this is a monomorphism: Finding an element of the kernel is equivalent
to the problem of eliminating all generators belonging to the new point
P by using the relations (PQ) and (PR), respectively (PQ’) and (PR’).
In other words, we have to find a nontrivial solution for the system of
linear equations

(a, b, c, d)




1 0 −1 0
0 1 0 −1
1 −1 0 0
0 0 1 −1


 = 0,

where the columns of the matrix represent the coefficients of y++ +
P ,

y++−
P , y+−+

P and y+−−
P (in this order) and the rows represent the part

of the relations (PQ’) and (PR’) which contains generators belonging
to P .

It is not difficult to check that the rank of the matrix is 3, and the
unique solution to the equation (up to a scalar multiple) is (1, 1,−1,−1).
So the corresponding relation, where the generators belonging to P van-
ish, is

y+++
P + y−−+

P + y+−+
Q + y−++

Q −
(
y++−

P + y−−−
P + y+−−

Q + y−+−
Q

)

−
(
y+++

P + y−+−
P + y++−

R + y−++
R

)
+ y+−+

P + y−−−
P + y+−−

R + y−−+
R = 0

This expression simplifies to

y+−+
Q + y−++

Q − y+−−
Q − y−+−

Q − y++−
P − y−++

P + y+−−
P + y−−+

P = 0

which is the sum of the two relations from (QR). So, no new relations
can be added to H1(X,Z) and the homomorphism is indeed injective.

In case II) it is obvious that there are no additional generators but
additional relations introduced by the additional edge, so H1(X

′,Z)
will be a factor group of H1(X,Z).

Now we turn to case I) and consider H1(X
′,Z)/H1(X,Z): The gen-

erators belonging to the points Q and R vanish and there remain the
following relations for the four additional generators belonging to P
(always two are identified by the relations of type (B)):
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y+++
P + y−−+

P = 0

y++−
P + y−−−

P = 0
(PQ)

y+++
P + y−+−

P = 0

y+−+
P + y−−−

P = 0
(PR)

It is not difficult to see that three of these relations are indepen-
dent, leaving just one free generator, e.g. y+++

P =: y. The seven other
variables with different upper indices are related to y as follows (∗):

+ + + + +− +−+ +−− −+ + −+− −−+ −−−

y y y y y−1 y−1 y−1 y−1

So H1(X
′,Z)/H1(X,Z) ∼= Z.

In case II) there are two different subcases:

a) A situation exactly as in figure 3.19 (up to a change of basis): four
triangles, whose outer vertices form a sublattice of index 2.

Without loss of generality we can assume that T and T ′ consist
of just the mentioned triangles (further triangles would not impose
relations on the generators belonging to P and Q). But as X ′ ∼= T1×R,
H1(X,Z) ∼= H1(X

′,Z) ∼= Z2, so no additional relations are added in this
case.

b) In all other cases with four triangles X ′ is a (non-trivial) line bundle
over the non-orientable surface of genus #T ′(2)−3 and Euler character-
istic 4−#T ′(2), hence H1(X

′,Z) ∼= Z#T (2)−3 × Z/2. But on the other
hand, the dimension ofH1(X,Z) is equal to #T (2)−1 = #T ′(2)−3+1,
so there is a new relation making one generator to be of order 2.

It is not difficult not verify that addition of a triangle by type II
occurs exactly once per inner vertex of the triangulation (e.g. we can
choose a special numbering by starting with all triangles having one
inner vertex in common, then move on to the next inner vertex, and so
on). So s is the number of times IIb occurs, which can be expressed as
the number of times II, but not IIa, occurs.

To conclude the proof of the theorem we remark that the relations
of type (A) of 2.2.3 have the only effect that they let the generators
belonging to the vertices of the “first” simplex vanish. As we have
shown, all further simplizes that bring exactly one new vertex introduce
also exactly one new (free) generator. This generator does never vanish
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by adding further relations, but can eventually be made to have order
2 by a new simplex without new vertices. These do not introduce new
generators. So H1(X,Z) is generated by l(Θ) - 3 variables, which are
free or of order 2 and do not have further relations. �

3.4.3 Proposition: Let Θ ⊂ R2 be a lattice polytope, T a unimodu-
lar coherent triangulation, and X the associated real local Calabi-Yau
variety. Then the virtual and non-virtual Betti numbers of X coincide,
that is βi(X) = bi(X) for i = 0, . . . , 3.

Proof: The proof will proceed by induction on the number of triangles
in T . The assertion is obviously true, if Θ is an elementary simplex
(and #T (2) = 1).

Now assume that the assertion is true for Θ, T and X and T ′ is a
lattice polytope with unimodular triangulation such that T ′ has exactly
one more triangle tan T . As shown previously (see proposition 3.4.2)
we can assume that the additional triangle σ is attached to Θ in one of
the two following ways:
I) σ adds one new vertex and two new edges.

II) σ adds no new vertex and one new edge.

In case I), it is an easy consequence of proposition 3.2.6, that

β(X ′; t)− β(X; t) =
2∑

k=0

(t− 1)2−k(#T ′(k)−#T (k))

= (t− 1)2 + 2(t− 1) + 1

= t2.

So, β2(X ′) = β2(X) + 1, whereas βi(X ′) = βi(X) for all i 6= 2.
In case II), by the same reasoning

β(X ′; t)− β(X; t) = (t− 1) + 1

= t.

So, β1(X ′) = β1(X) + 1, whereas βi(X ′) = βi(X) for all i 6= 1.
It is easy to verify with proposition 3.4.1, that in both cases virtual

and non-virtual Betti numbers behave the same way. �

It is to be noted that the effects on cohomology by adding new
triangles reflect a certain topological operation on the variety. As at the
starting point of this process, all varieties are homeomorphic (namely
to R3, corresponding to a single triangle), this leads to the following
idea: If we can build up two different lattice polytopes and respective
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triangulations in such a way, that in each step the same type of triangle
addition occurs, the the two varieties are homeomorphic. This leads to
the following conjecture:

3.4.4 Conjecture: Let Θ ⊂ R2 be a lattice polytope, T a unimodular
triangulation of it and X the associated real local Calabi-Yau variety.
Denote by A the set of inner vertices of the triangulation.

Then the topology ofX is characterized by the following information
on T :

• the number of inner edges of T , which do not contain any inner
point,

• f : A→ Ñ, where f(v) is defined to be the number of triangles in
star(v), with additional differentiation if this number is four: If
star(v) is like figure 3.19, then f(v) := 4a, otherwise f(v) := 4b.

• g : A × A → Ñ, where we set g(v, w) = ∞ if v and w are
joined by an edge and g(v, w) is set to be the number of edges in
star(v)star(w) otherwise.

So, two 3-dimensional smooth real local toric Calabi-Yau varieties
are homeomorphic if and only if there is a bijection on the inner vertices,
such that the above information are equal for both varieties. As also
the fundamental group of the varieties is described by these datas, we
conjecture also the following reformulation:
Two 3-dimensional smooth real local toric Calabi-Yau varieties are
homeomorphic if and only if their fundamental groups are isomorphic.

Evidences: The addition of a simplex to a triangulation T should
correspond to a kind of handle-adding on the local Calabi-Yau variety
X (this can also be verified for the 2-dimensional varieties). The de-
scription works on the compactification X of X. When an operation
modifies X to X ′, we can then recover X ′ as X ′\∂X ′.

In case of addition of type I (one more vertex), the operation is the
attachment of a handle H := D2 × [−1, 1] by choosing two discs in
∂X and a homeomorphism f identifying them with D2×{1,−1}. The
result at first view depends on two choices: the boundary components
of X in which the discs lie, and on the orientation (whether the two
discs have the same or different orientation).

But we know that the number of components of ∂X is 1 or 2. In
the first case there is no choice left, in the other case it is easy to verify
that ∂X ′ has only one component, which can only be possible if the
two discs lie in different components of ∂X.
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If the orientation on the two discs were different, X ′ would be non-
orientable, which is not the case. So the orientation must be the same,
which again leaves no choices. So the operation in for a vertex addition
of type I is well defined.

The case of adding a simplex of type II leads to the attachment of a
handle [−1, 1]×D2. This time the boundary part [−1, 1]×S1 is attached
to a corresponding part of X. It is believed that there are exactly two
well defined possibilities of attaching this handle, corresponding to the
addition types IIa and IIb, although we do not yet fully understand the
latter one.

Assumed the above statements were true it is then easy to check
that two triangulations coinciding with the above information can be
built up step by step from a single simplex by adding exactly the same
type of simplex in both cases at each step. It then follows that they
must be homeomorphic.
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IV Real Compact
Calabi-Yau Toric
Hypersurfaces

4.0.1 Definition: A compact smooth projective complex algebraic va-
riety X is called a complex Calabi-Yau variety if it has trivial canonical
bundle and H i(X,OX) = 0 for all i = 1, . . . , dimX − 1. A real alge-
braic variety X is a real Calabi-Yau variety if its complexification is a
(complex) Calabi-Yau variety.

If dimX = 1 then X is called an elliptic curve, if dimX = 2 it is called
a K3 surface.

Varieties of this type (not necessarily algebraic ones) were first con-
sidered in 1955 by E. Calabi, who conjectured that they possessed a
Ricci-flat metric. The conjecture was proven in 1978 by S.T. Yau (see
[Cal] and [Yau]).

A vigorous interest especially to 3-dimensional complex Calabi-Yau
varieties was brought by physicists due to the importance of these vari-
eties in string theory. Physical insight gave also the way for a fascinat-
ing conjecture, the “mirror symmetry”, which states, that there should
be a symmetric relation on 3-dimension Calabi-Yau varieties, called the
mirror map, with the property that such a mirror pair induce equivalent
“supersymmetric conformal field theories” (for more details we refer to
[CK]). This implies in particular that the respective Hodge numbers of
a mirror pair (V, V ∗) are related by h1,1(V ) = h2,1(V ∗) and viceversa.
A more illustrative point of view is that the Hodge diamond is mirror
symmetric with respect to the axis with angle 45◦ (hence the name of
the map). A mathematical explanation for this phenomenon is not yet
known in full generality despite many progresses in recent years (a cer-
tain difficulty hereby lies in the fact that the physical theories at some
points lack a rigorous mathematical foundation). Some of these ideas
(see [Kon1] and [SYZ]) relate the map to Lagrangian submanifolds. As
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for varieties defined over the reals the real points are always a special
Lagrangian submanifold, it is still in the spirit of mirror symmetry to
investigate the topology of real Calabi-Yau varieties.

1- and 2-dimensional Calabi-Yau varieties had already been studied
long before this. They represent classes of curves resp. surfaces which
are relatively easy to access, yet non-trivial, and deliver many beautiful
results. In contrast, for 3-dimensional Calabi-Yau varieties relatively
little is known and many fundamental questions are still open. For
some time, even the number of known examples was very restricted.

Therefore it can be considered as a major achievement, when in 1994
V. Batyrev showed that generic hypersurfaces of toric Fano varieties are
Calabi-Yau varieties (possibly with singularities). All previously known
examples could be shown to be special cases of this construction. The
mirror symmetry can then be explained by the dual map between two
reflexive polytopes. As toric varieties are defined over the integers, all
these examples are in particular defined over the reals.

In this chapter we want to push the relationship between convex ge-
ometry and (real) Calabi-Yau varieties a little further: We construct the
hypersurfaces with a combinatorial method introduced by O. Viro in
1981, and the removal of singularities will be connected to descriptions
of real local toric Calabi-Yau varieties. Our focus lies in the determi-
nation of the Betti numbers (with integral and Z/2Z - coefficients) and
their dependency on the initial data. We provide theoretical results as
well as a computer program allowing us to calculate concrete examples.

In the first section of this chapter we present the construction method
proposed by Batyrev, mainly following [Bat].

In the second section we give an overview over the real K3 surfaces
and their topological classification.

In the third section we present Viro’s method to construct real hy-
persurfaces in compact toric varieties.

We discuss the computer program for the calculation of Betti num-
bers in the forth section.

In the fifth section we get various independency results when us-
ing only unimodular triangulations. We use them to deduce relations
between a reflexive polytope and its dual.

In the sixth section we present the results of various computer ex-
periments and propose some conjectures.
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4.1 Construction of Calabi-Yau Toric Hy-

persurfaces

4.1.1 Definition: An algebraic variety X is called Gorenstein if any
canonical divisor KX is a Cartier-divisor. It is called Q-Gorenstein if
some multiple aKX is a Cartier-divisor, where a is a positive integer.

Let X, Y be normal Q-Gorenstein-varieties and KX , KY the canon-
ical classes, respectively. A morphism ϕ : Y → X is called non-
discrepant, if KY = ϕ∗(KX).

4.1.2 Proposition: Let ∆ ⊂ Rd be a reflexive polytope, Σ its normal
fan and X∆ = XΣ the corresponding toric variety. Then X∆ is Q-
Gorenstein.

Let Σ′ be a subdivision of Σ and ϕ : XΣ′ → XΣ the corresponding
toric morphism. Then ϕ is non-discrepant if and only if Σ′ is generated
by a lattice subdivision of the boundary of ∆∗.

Proof: See [Bat]. �

4.1.3 Definition: We call the toric variety XΣ′ a toric maximal projec-
tive non-discrepant partial desingularization (toric MPCP-desingularization3)
if the subdivision of ∂(∆∗) is a coherent maximal triangulation.

4.1.4 Proposition: There always exists a toric MPCP-desingularization.

Proof: This follows from proposition 1.2.16. �

4.1.5 Proposition: Let X̃ = XΣ′ be a toric MPCP-desingularization
of X∆.

(i) The singular locus of X̃ has codimension at least 4.

(ii) X̃ is smooth if and only if it is defined by a unimodular coherent
triangulation of ∂(∆∗).

Proof: For a) see [Bat].
Assertion b) follows from the fact, that it is equivalent to give a

unimodular triangulation and to claim that Σ′ be a smooth fan. �

Remark: If ∆ is a 3-dimensional reflexive polytope, then any toric
MPCP-desingularization X̃∆ is smooth. This follows immediately from

3where the C stands for the somewhat artificial, but better abbreviatable, word
“crepant” instead of ”non-discrepant”.
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(i). It can also be derived from (ii) by the following observation: The
facets of ∆∗ are 2-dimensional polytopes. But any maximal triangula-
tion of a 2-dimensional polytope is already unimodular, hence XΣ′ is
smooth.

4.1.6 Definition: Let ∆ ⊂ Rd be a reflexive polytope and X∆ the
associated real toric variety. Let

f(X1, . . . , Xd) =
∑

m∈∆

cmX
m1
1 . . .Xmd

n

be a Laurent-polynomial with Newton-polytope ∆. f defines a hyper-
surface in (R∗)d. We designate its completion in X∆ by Z.

We call Z ∆-regular if for every σ ∈ Σ the intersection Z ∩ Oσ is
transversal (if not empty).

4.1.7 Proposition: The hypersurfaces Z are generically ∆-regular. In
other words, the set of Laurent-polynomials defining ∆-regular hyper-
surfaces is Zariski-open in the set of all Laurent-polynomials.

Proof: See [Bat]. �

Remark: The property of being ∆-regular can be interpreted as fol-
lows: The singularities of Z are all induced by the singularities of the
ambient toric variety X∆.

So resolving the singularities of X∆ resolves the singularities of all
∆-regular hypersurface at the same time.

4.1.8 Definition: Let ∆ be a reflexive polytope, X∆ the correspond-
ing toric variety and Z a ∆-regular hypersurface. Let ϕ : X̃ → X∆

be a MPCP-desingularization. Then we call Z̃ := ϕ−1(Z) a MPCP-
desingularization of Z.

Remark: It follows from proposition 4.1.5, that the singularity locus
of Z̃ has also codimension at least 4 and Z̃ is smooth if and only if the
triangulation on ∂(∆∗) is unimodular.

4.1.9 Theorem: Let ∆ ⊂ Rd be a reflexive polytope, X∆ the corre-
sponding toric variety and Z a ∆-regular hypersurface inX∆. Then any
smooth toric MPCP-desingularization Z̃ of Z is a Calabi-Yau variety,
which we call Calabi-Yau toric hypersurface.
If Z̃ ′ is an analogously constructed variety for ∆∗ and d ≥ 4 then

h1,1(Z̃) = hd−2,1(Z̃ ′) = l(∆∗)−d−1−
∑

Θ⊂∆∗ facet

l∗(Θ∗)+
∑

Θ∗⊂∆ face,
codim Θ=2

l∗(Θ)l∗(Θ∗).
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Proof: See [Bat]. �

Remark: The second part of the above theorem verifies the relation
of Hodge numbers of a 3-dimensional mirror pair. It is to be noted
that in the construction various choices can be made, which have no
effect on the result, though. Such independencies are quite typical
for Calabi-Yau varieties, even in more general context. For instance,
one might choose two different toric MPCP-desingularizations. The
resulting varieties are then birational equivalent. For example Batyrev
showed in [Bat2] that any two birational Calabi-Yau varieties have the
same Betti numbers (Kontsevich announced in [Kon1] that this is even
true for the individual Hodge numbers). In particular, this is true for
two different choices of toric MPCP-desingularizations. In some of the
next sections we will prove such type of results also for real Calabi-Yau
varieties.

Up to the end of the section we will adopt the following notation:
If Θ is a lattice polytope, then we designate by XΣ(Θ) the real toric
variety associated with the cone over Θ in the linear space generated
by cone(Θ). For a maximal coherent triangulation T of Θ, we designate
by XΣ(Θ,T ) the real local toric Calabi-Yau variety defined by T and by

ϕΘ,T : XΣ(Θ,T ) −→ XΣ(Θ)

the (partial) desingularization defined by T . By

xΘ := Ocone(Θ) ⊂ XΣ(Θ)

we designate the unique torus-invariant point in XΣ(Θ).

4.1.10 Proposition: Let ∆ be a reflexive polytope and Z a real ∆-
regular hypersurface in X∆. Let ϕ : X̃ → X∆ be a toric MPCP-
desingularization of X∆, defined by a maximal coherent triangulation
T of the boundary of ∆∗. For any face Γ ⊂ ∆ let ZΓ := Z ∩Ocone(Γ∗).

Then ϕ−1(ZΓ) is isomorphic to ZΓ × ϕ
−1
Γ∗,T (xΓ∗).

Proof: Let Γ be any face of ∆ and y ∈ Ocone(Γ∗) any point. According
to [Bat] 4.2.5, ϕ−1(y) is isomorphic to ϕ−1

Γ∗,T (xΓ∗). Since ϕ is a toric
morphism, it commutes with the the torus action, so ϕ−1(Ocone(Γ∗)) is
isomorphic to Ocone(Γ∗) × ϕ

−1
Γ∗,T (xΓ∗) and the assertion follows at once

by restriction to ZΓ. �

Remark: The XΣ(Θ,T ) are exactly the real local toric Calabi-Yau va-
rieties which we investigated in the previous chapter.
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4.2 Real K3 Surfaces

K3 surfaces are the usual name of two-dimensional Calabi-Yau vari-
eties4. They constitute a class of surfaces that are relatively easy to
access without being by any means trivial. Thus they have been studied
very intensively and successfully and have shown to possess an inherent
beautiful aesthetic.

In the following we give a short overview of some properties of com-
plex K3 surfaces, then concentrate on the topology of real K3 surfaces.
We present the classification of the topological types, which is known
by works of Kharlamov (see [Kha]).

A good overview over K3 surfaces can be found in [Pls], additional
information on real K3 surfaces in [Sil].

Examples: The following surfaces are K3 surfaces:

a) a double cover of P2 ramified in a smooth sextic,

b) a double cover of P1 × P1 ramified in a smooth curve of bidegree
(4, 4),

c) a smooth quartic surface in P3,

d) a complete intersection of a quadric and a cubic in P4.

These examples are well-known.It is worth to note, that a), b) and
c) can also be followed from theorem (4.1.9). This is immediate for case
c), as the Newton polygon of the quartic is a 3-dimensional reflexive
simplex. In the cases a) and b) let f(z) = 0 be the defining equation
for the sextic, respectively for the curve of bidegree (4, 4). It is easy to
verify that the Newton polytope of t2−f(z) is a reflexive polytope and
so by the same theorem defines a K3 surface. Note that the Newton
polytope of f is itself a reflexive polytope stretched by factor 2. Indeed,
the same principle works for all two-dimensional reflexive polytopes.

For the definition of the aftermentioned invariants, see e.g. [Hart].

4.2.1 Proposition: Let X be a complex K3 surface.

(i) H0(X,Z) ∼= H4(X,Z) ∼= Z
H1(X,Z) ∼= H2(X,Z) = 0
H2(X,Z) ∼= Z22.

4The name arouse in the 50’s of the last century and is said to be derived from
the mathematicians Kähler, Kummer and Kodaira. Probably it was also inspired
by a famous mountain in the Himalaya, whose first-time ascension was at this time
subject to great public interest.
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The Hodge decomposition of H2(X,C) ≡ H2(X,Z)⊗C is given as
h0,2 = h2,0 = 1, h1,1 = 20, thus giving rise to the following Hodge
diamond:

1

0 0

1 20 1

0 0

1

(ii) The cup-product H2(X,Z)×H2(X,Z)→ H4(X,Z) ∼= Z is a bilin-
ear, symmetric, non-degenerate form of signature (3, 19).

Proof: See [Pls]. �

Complex K3 surfaces fulfill the following two strong topological
properties:

4.2.2 Proposition: X is a complex K3 surface if and only if it is
simply connected and KX = 0.

Proof: See [Pls]. �

4.2.3 Proposition: All complex K3 surfaces are diffeomorphic.

Proof: See [Pls]. �

The last two results are not true for real K3 surfaces. Thus K3
surfaces constitute a further example for the general rule, that topology
in the complex situation is much simpler than in the real situation.

We present the classification of the topological types of real K3 sur-
faces, that is known since the work of Kharlamov ([Kha]). A connected
real topological closed surface is characterized by the cohomology of
its connected components. So one part of the classification consists in
finding restrictions to the Betti numbers, another in constructing all
remaining possible cases.

Let XC be the complexification of a real surface X = XR. Then the
complex conjugation induces an antiholomorphic involution on XC as
well as an involution on cohomology groups, which we call S. Set

bi := dimS(H i(XC,Z))

and
λi := dim FixS(H i(XC,Z))
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for i = 0, . . . , 4, where FixS(H i(XC,Z)) denotes the fix point set of the
action of S on the cohomology. The most important of these numbers
are those of middle dimension. So, to simplify notation we set

b := b2,

λ := λ2.

Let further
Bi := dimH i(XC,Z/2)

denote the mod 2-Betti numbers of the complex surface.

4.2.4 Proposition: (Smith inequality) Let XR be any real alge-
braic variety and XC its complexification. Then

∑

i

dimH i(XR,Z/2) ≤
∑

j

(
Bj − 2 dim(1 + S)Hj(XC,Z/2)

)
.

Proof: See [Sil], chapter I. �

4.2.5 Definition: Real algebraic surfaces, for which the Smith-inequality
is valid with “=” instead of ”≤”, are called Galois-maximal.

4.2.6 Proposition: Nonempty real K3 surfaces are Galois-maximal.

Proof: See [Sil]. �

Remark: The Smith inequality is a generalization of the Harnack
inequality for real curves, which states that it has at most g+1 compo-
nents, with g the genus of the curve. Curves with the maximal numbers
of components are called M-curves and play an important role in the
isotopy classification of curves.

4.2.7 Proposition: Let X be a Galois-maximal real algebraic surface
and λi, bi defined as above. Then

∑

i

λi ≡ b2 mod 2.

4.2.8 Definition: A Galois-maximal algebraic real surface is called
(M − r)-surface if

∑
i λi = r.

4.2.9 Proposition: Let X be a Galois-maximal real algebraic surface.

a) If X is a M-surface, then

b2 ≡ 2h0,2 mod 8.
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b) If X is a (M − 1)-surface, then

b2 ≡ 2h0,2 ± 1 mod 8.

c) If

b2 ≡ 2h0,2 ± 3 mod 8,

then X is at most a (M − 3)-surface (that is
∑

i λi ≥ 3).

4.2.10 Proposition: Let XR be a real K3 surface. Then

(i)
∑

i dimH i(XR,Z/2) = 24− 2λ,

(ii) χ(XR) = 2b− 20.

Proof: See [Sil]. �

4.2.11 Corollary:

dimH0(XR,Z/2) =
2 + b− λ

2
H1(XR,Z/2) = 22− λ− b.

Proof: This result follows immediately by Poincaré-duality. �

The restrictions presented allow as only values for (b, λ) those given
in table 4.1. In the following we will show, that the set of restrictions
is already complete and that each possible value for (b, λ) characterizes
exactly one topological type of real K3 surface, with one exception.
Recall also, that XR is an orientable smooth manifold. So each compo-
nent is a sphere-with-handles Tg, where g is the number of handles. It
is further well-known, that χ(Tg) = 2− 2g.

4.2.12 Proposition: Let XR be a nonempty real K3 surface. Then
either XR

∼= T1 ∐ T1 or XR has at most one component with Euler
characteristic ≤ 0.

Proof: See [Sil]. �

4.2.13 Corollary: Let XR be a nonempty real K3 surface. Then the
topological type of XR is uniquely determined up to homeomorphism
by the value of (b, λ), except when (b, λ) = (10, 8). In this case, XR

∼=
T1 ∐ T1 and XR

∼= S2 ∐ T2 are the possible types.
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b

�

5

5

1 0

10

1 5 2 0

11

Table 4.1: Possible values of (b, λ) for a real K3 surface

Proof: The exceptional case is easy to verify. In the other cases XR =
S2 ∐ . . .∐ S2 ∐ Tg with S2 occurring 2+b−λ

2
− 1 times. So

2b− 20 = χ(XR) = χ(S2) + · · ·+ χ(S2) + χ(Tg)

= b− λ+ 2− 2g.

Thus

g = 11−
b+ λ

2

is uniquely determined and with it the topological type of XR. �

4.2.14 Proposition: All real 2-folds corresponding to a value of (b, λ)
in table 4.1 can be realized as a real K3 surface. The complete list of
topological types is given as follows (there are 66 of them):

9S2 ∐ T2 5S2 ∐ T6 S2 ∐ T10

9S2 ∐ T1 8S2 ∐ T2 5S2 ∐ T5 4S2 ∐
T6 S2 ∐ T9 T10
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10T0 8S2 ∐ T1 7S2 ∐ T2 6S2 ∐ T3 5S2 ∐ T4 4S2 ∐ T5 3S2 ∐
T6 2S2 ∐ T7 S2 ∐ T8 T9

9T0 7S2 ∐ T1 6S2 ∐ T2 5S2 ∐ T3 4S2 ∐ T4 3S2 ∐ T5 2S2 ∐
T6 S2 ∐ T7 T8

8T0 6S2 ∐ T1 5S2 ∐ T2 4S2 ∐ T3 3S2 ∐ T4 2S2 ∐ T5 S2 ∐ T6 T7

7T0 5S2 ∐ T1 4S2 ∐ T2 3S2 ∐ T3 2S2 ∐ T4 S2 ∐ T5 T6

6T0 4S2 ∐ T1 3S2 ∐ T2 2S2 ∐ T3 S2 ∐ T4 T5

5T0 3S2 ∐ T1 2S2 ∐ T2 S2 ∐ T3 T4

4T0 2S2 ∐ T1 S2 ∐ T2 T3

3T0 S2 ∐ T1 T2 T1 ∐ T1

2T0 T1

T0

∅

Proof: In fact, all of these types can be realized as smooth quartics
in RP3 (see [Kha]) as well as as double cover of RP2

+ ramified along
a smooth real sextic curve, where RP2

+ is the part of RP2, where the
sextic is positive. In the latter case, clearly the topology of the K3 sur-
face depends only on the isotopy type of the real sextic. The isotopy
classification of these was completed by Gudkov in 1969 ([Gud]), sim-
pler constructions have been given later by O. Viro in [Vi2] using the
method we present in the next section. Table 4.2 shows the complete
list (there are 55 types):

〈9∐ 1〈1〉〉 〈5 ∐ 1〈5〉〉 〈1∐ 1〈9〉〉
〈10〉 〈8 ∐ 1〈1〉〉 〈5∐ 1〈4〉〉 〈4∐ 1〈5〉〉 〈1∐ 1〈8〉〉 〈1〈9〉〉
〈9〉 〈7∐ 1〈1〉〉 〈6∐ 1〈2〉〉 〈5∐ 1〈3〉〉 〈4 ∐ 1〈4〉〉 〈3∐ 1〈5〉〉 〈2∐ 1〈6〉〉 〈1∐ 1〈7〉〉 〈1〈8〉〉

〈8〉 〈6 ∐ 1〈1〉〉 〈5 ∐ 1〈2〉〉 〈4 ∐ 1〈3〉〉 〈3∐ 1〈4〉〉 〈2∐ 1〈5〉〉 〈1∐ 1〈6〉〉 〈1〈7〉〉
〈7〉 〈5 ∐ 1〈1〉〉 〈4 ∐ 1〈2〉〉 〈3∐ 1〈3〉〉 〈2∐ 1〈4〉〉 〈1∐ 1〈5〉〉 〈1〈6〉〉

〈6〉 〈4 ∐ 1〈1〉〉 〈3 ∐ 1〈2〉〉 〈2∐ 1〈3〉〉 〈1∐ 1〈4〉〉 〈1〈5〉〉
〈5〉 〈3 ∐ 1〈1〉〉 〈2∐ 1〈2〉〉 〈1∐ 1〈3〉〉 〈1〈4〉〉

〈4〉 〈2 ∐ 1〈1〉〉 〈1∐ 1〈2〉〉 〈1〈3〉〉
〈3〉 〈1∐ 1〈1〉〉 〈1〈2〉〉 〈1〈1〈1〉〉〉

〈2〉 〈1〈1〉〉
〈1〉
〈0〉

Table 4.2: Isotopy types of smooth real plane projective algebraic curves
of degree 6.

A comparison with the topological types of real K3 surfaces shows
that indeed all can be realized as double cover (note that each curve
leads to two different covers according to the sign of the sextic). So
the theory of real K3 surfaces yields a striking connection between real
smooth quartic surfaces of P3 and real smooth plane sextic curves. �
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4.3 The Patchworking Method of Viro

In his famous 16th problem issued in 1900 Hilbert asked for the mutual
position of the ovals of nonsingular real plane projective algebraic curves
with a given degree (in modern words, the isotopy classification). Up
to the 80’s of the 20th century there was mainly only one method
to produce examples of such curves: slight deformations of reduced
singular curves (e.g. the union of two ellipses, for curves of degree
4) by small disturbations of the coefficients. But the result of this
desingularization was in some way a matter of good or bad luck, which
led to long and inefficient searches for the right constructions. So it
came that the answer to Hilbert’s problem was known only for the
degrees up to 6 (done by Gudkov in 1969 in [Gud]).

In 1979 O. Viro introduced a generalization of this method which
gives much more control over the process of desingularization (see
[Vi1]). It makes possible to cut out the neighbourhood of a singu-
larity and replace it by an arbitrary nonsingular curve, as long as they
fit together at the boundary. In this way, the final curve is obtained by
”glueing” several patches consisting of nonsingular real plane curves.

The method generalizes naturally to real hypersurfaces of toric va-
rieties of arbitrary dimension. Still, it was probably most successfully
used for the construction of real curves: Almost immediately, Viro con-
cluded the isotopy classification of real plane projective curves of degree
7 and advanced a lot in degree 8 (see [Vi2]). As an other example, in
1996 I. Itenberg disproved a longstanding conjecture of Ragsdale (see
[ItVi]). Itenberg used a special case of the Viro method, the combinato-
rial patchworking, which will also serve us in our work. In this case, the
patches are hyperplanes in a toric variety assigned to a lattice simplex
and the position of the hyperplane is determined by a sign function on
the vertices of the simplex.

We present the general patchworking theorem and a sketch of the
proof, as well as the combinatorial patchworking.

4.3.1 General Patchworking

4.3.1 Definition: Let

f =
∑

ω∈Zd

aωx
ω1
1 . . . xωd

d

be a real polynomial in d variables. Then ∆(f) := Conv{ω ∈ Zd | aω 6=
0} is called the Newton polytope of f .
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If Γ ⊂ Rd is any set, we call

fΓ :=
∑

ω∈Zd∩Γ

aωx
ω1
1 . . . xωd

d

the Γ-truncation of f . f is called completely non-degenerate if for all
faces Γ of ∆, fΓ is non-singular in (R∗)d.

Assume now, that ∆ = ∆(f) is d-dimensional. The equation f = 0
defines a hypersurface in (R∗)d. Let Zf be the completion in the real
toric variety X∆ assigned to ∆.

We know that X∆ can be obtained by glueing of copies ∆(ξ), ξ ∈
{±1}d, along the facets. For any ξ ∈ {±1}d let

µ(ξ) : X∆

(
Rξ

≥0

)
→ ∆(ξ)

be the associated moment map.

4.3.2 Definition: A chart of f is the set of pairs {
(
∆(ξ), µ(ξ)

(
V∆(f)

))
|

ξ ∈ {±1}d}.

4.3.3 Theorem: Let f1, . . . , fr be completely non-degenerate real poly-
nomials with the following properties:

(i) f
∆(fi)∩∆(fj )
i = f

∆(fi)∩∆(fj)
j for all i, j = 1, . . . , r,

(ii) ∆ :=
⋃

i ∆(fi) is a convex polytope and the {∆(fi)} form a poly-
topal subdivision,

(iii) the subdivision is coherent, that is, there is a convex piecewise linear
function ν : ∆→ R such that the ∆(fi), i = 1, . . . r, are exactly the
domains of linearity.

Let (gt)t be a family of polynomials defined by

gt =
∑

ω∈Zd

aωt
ν(ω)xω1

1 . . . xωd

d ,

with parameter t > 0, where aω is the appropriate coefficient of fi,
when ω ∈ ∆i.

Then there is a t0 > 0 such that for all t ∈ [0, t0], gt is completely
non-degenerate and its chart is obtained by glueing of the charts of
f1, . . . , fr.

Sketch of proof: (A more detailed sketch can be found in [IMS], see
[Vi1] for the full proof.)

As the strongly convex piecewise linear functions form an open cone,
we can assume that ν(∆ ∩ Zd) ⊂ Z.
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Now consider the following polytope

∆̃ := {(x, y) | x ∈ R, ν(x) ≤ y ≤ M},

where M is an arbitrary upper bound to ν|∆. By strong convexity of

ν, ∆̃ has “lower facets” ∆̃1, . . . , ∆̃r, where ∆̃i := {(x, ν(x) | x ∈ ∆i},
and an upper facet (∆,M).

For each c > 0, the equation t − c = 0 defines a hyperplane Hc

isomorphic to X(∆,M)
∼= X∆. For c → 0, Hc degenerates to

⋃
iXe∆i

⊂
Xe∆.

+ =F

Figure 4.21: ∆̃ as part of Xe∆ with the hypersurfaces Z and Hc

Interpret (gt)t as polynomial in d+1 variables, then {gt = 0} defines
a hypersurface Z in Xe∆. This hypersurface crosses Hc transversally for
all c > 0, as well as

⋃
iXe∆i

. In particular, for c > 0 small enough,

Z ∩Hc
∼= Z ∩

⋃

i

Xe∆i
.

But Z ∩Xf∆i
= {g

f∆i

t = 0} ⊂ Xe∆i
. The isomorphism Xe∆i

→ X∆i
given

by the projection ∆̃i → ∆i takes this to {fi = 0} ⊂ X∆i
. So the chart

of Z ∩Hc id obtained by patchworking the charts of f1, . . . , fr. �

4.3.2 Combinatorial Patchworking

Let ∆ ⊂ Rd a d-dimensional bounded lattice polytope with a coherent
lattice triangulation T . To every vertex of the triangulation be assigned
a sign, or in other words be given a function

ε : T (0)→ {±1}.

For every ξ ∈ S := Hom(Zd, {±1}) be ∆(ξ) a copy of ∆ and T (ξ) a
copy of the triangulation. We set the signs on the copies of vertices as
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follows:

ε(ξ) :T (ξ)(0)→ {±1}

v(ξ) 7→ ξv · ε(v),

where we write ξv for the value of v under the map ξ.
We make the following recursive construction:

(i) For all σ ∈ T (1), for all ξ ∈ S:

Zσ(ξ) :=

{
σ̂(ξ), if the vertices of σ(ξ) have different sign,

∅, if both vertices of σ(ξ) have the same sign.

We recall that σ̂ is the barycenter of σ.

(ii) For dimσ = i > 1 let τ0, . . . τi be the facets of σ. Then for all ξ ∈ S
we define

Zσ(ξ) := conv(

i⋃

k=0

Z
τ
(ξ)
k

),

which is an (i− 1)-cell (this is easy to verify on a standard simplex
σ = {x |

∑
xi = 1}, where Z = {x ∈ σ |

∑
I xi = 1

2
} and I is the

set of indizes with positive sign).

Then Zσ(ξ) is a cell that divides the vertices of σ(ξ) with positive
sign from those with negative sign, or is empty if all signs are equal.

We define the following equivalence relation on ∆(•) :=
⋃

ξ ∆(ξ): For

every face Γ of ∆ we identify Γ(ξ) with Γ(ξ′) if and only if ξ ·ξ′ is constant
on Aff(Γ) ∩ Zd (or, equivalently ξ · ξ−1 ≡ 1 on Latt(Γ)). We define

X∆ :=
⋃

ξ∈S

∆(ξ)/ ∼

Z :=
⋃

σ∈T ,ξ∈S

Zσ(ξ)/ ∼

and TX∆
to be the induced triangulation on X∆.

Recall that X∆ is homeomorphic to the real toric variety assigned
to ∆ (and thus we denote it in the same way).

4.3.4 Proposition: Z is isotopic to a hypersurface in X∆, that means
there exists a hypersurface Y ⊂ X∆ and a homeomorphism Φ : X∆ →
X∆, such that Φ(Z) = Y . On (R∗)d ⊂ X∆ the hypersurface can be
defined as the zero-set of a real polynomial with Newton polygon ∆.
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Proof: By the general patchworking theorem, it is enough to show,
that for any σ ∈ T (d), there are a polynomial f and homeomorphisms
Φ(ξ) : σ(ξ) → σ(ξ) for all ξ ∈ S that preserve the faces and map Zσ(ξ) to
the chart of f .

Let v0, . . . , vd be the vertices of σ and set

f(x) :=
∑

i

ε(vi)x
vi .

In the following we will assume ξ = (1, . . . , 1), the other cases are easy
to deduce.

Let σ̃ be the d-dimensional standard simplex. An affine map σ →
σ̃ defines a rational map Xσ → Xσ̃ that induces a diffeomorphism
Xσ(R≥0) → Xσ̃(R≥0). By the moment map, we can view this as a
diffeomorphism σ → σ̃ preserving the faces. Taking induced signs on
the vertices of σ̃ and defining f̃ in an analogous way, it follows that
Zσ is mapped to the hypersurface Z̃ ⊂ Xσ̃ defined by f̃ . But Z̃ is a
hyperplane, and it is easy to see, that it indeed separates the signs on
the vertices of σ̃, and so the same must be true for Z and the signs on
the vertices of σ. �

Examples: We show some examples that demonstrate how this method
can be used to construct topological models of real K3 surfaces.

Let ∆ be a 2-dimensional polytope that arises from a reflexive poly-
tope by doubling the length of the edges. Let Z be a hypersurface of
X∆, defined by a real polynomial f with Newton polygon ∆. Then Z
divides X∆ into two parts: X+

∆ and X−
∆ according to the (well-defined)

sign of f (note that we can interchange the role of the two parts by
multiplying f with -1).

The double cover of X+
∆ branched along Z is a real K3 surface, (as

its complexification is the double cover of X∆ branched along Z, which
is a complex K3 surface).

In the following examples (figures 4.22 and 4.23), ∆ is either the
triangle (0, 0), (6, 0), (0, 6) leading to a curve of degree 6 in RP2, or
the square with vertices (0, 0), (4, 0), (0, 4), (4, 4) leading to a curve of
bidegree (4, 4) in RP1 × RP1. The hypersurface Z is obtained by com-
binatorial patchworking.
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Figure 4.22: The double cover of X+
∆ gives rise to an oriented surface

of genus 1. The double cover of X−
∆ gives rise to an oriented surface of

genus 1 and a sphere.

Figure 4.23: The double cover of X+
∆ gives rise to an oriented surface

of genus 9. The double cover of X−
∆ gives rise to an oriented surface of

genus 1 and 8 spheres.



108 Chapter IV. Real Compact Calabi-Yau Toric Hypersurfaces

4.4 Algorithms and Implementations

The combinatorial patchworking method seems at a first glance ideally
suited for doing calculations with a computer: The method itself con-
sists of relatively few, explicit steps which have to be repeated boringly
often, the input data are very concrete and reasonably easy to get into
machine-readable form and the natural output data describe the hyper-
surface and its ambient space as cell complexes, which are very useful
for further calculations.

Nevertheless, to our knowledge, such a program has never been re-
alized before. A possible explanation may be that so far the main
application of the method has been the construction of curves. Indeed,
what would be a desirable task, namely letting the computer check
for all curves of given degree that can be constructed via combinato-
rial patchworking, fails completely in practice due to the huge number
of possible choices. So, the interesting examples still have to be con-
structed by an “intelligent and inspired brain” by careful building of
triangulations and selection of signs. But then, the topological type of
the curve is already apparent from the work with paper and pen and
the computer is of no additional use.

For our purpose, which lies in the construction of Calabi Yau vari-
eties, the situation is much more favorable: In higher dimensions (typi-
cally 2 or 3) paper and pen constructions get more and more difficult if
not impossible even in very simple cases. Furthermore, it becomes much
more necessary to describe the varieties by some numerical invariants
than to have its actual picture.

These considerations lead us to implement the calculation of the ho-
mology groups of a hypersurface constructed by combinatorial patch-
working. The program was realized with Maple. Excessive duration
for the calculation is a danger always imminent in this kind of prob-
lems, but fortunately we found that the examples we are interested in,
lie within the range of computability. With our implementation we
sometimes encountered crashes due to memory exhaustion, but this is
mainly due to inefficient use of the available resources (see below for a
more detailed discussion of these issues). In order to push the limit a
little further at least for partial results we also wrote a procedure that
just computes the number of connected components and is considerably
faster.

The Algorithms

As the general outline of the two programs should already be clear
from the description of the combinatorial patchworking method and
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great parts of them deal with mathematically uninteresting implemen-
tation details, we give here only a rough overview over the algorithm,
highlighting just one aspect on orientations which has not been dis-
cussed yet. For those who are interested in details, we refer to the
source code and its comments [see .., the relevant procedures are named
“HS Homology” and ”HS NrOfComp”].

We further note that the programs rely on the package “convex” by
Matthias Franz, which can be downloaded at [Frz1].

A HS Homology

The program divides in the following steps:

0: Check the correctness of the given triangulation
(this step is not really necessary but quite useful in practice).

I: Determine the full triangulation T
(input data are usually only the maximal simplizes)

II: Calculate the glueing:

• Determine ∆ and all its faces (with package “convex”)

• For each face Γ of ∆:

– Calculate basis of Aff(Γ) (with package “convex”)

– Calculate lattice basis of Aff(Γ) ∩ Zd

(this is done by implementing an algorithm by J. Hobby,
see [Hob])

– For each ξ ∈ Hom(Zd, {±1}):

∗ Check: Is ξ constant on the basis?
Yes → add ξ to the set UΓ

III: Construct list of the cells of the hypersurface:

• For all simplizes σ:

– Let G = Hom(Zd, {±1})

– (L): Take ξ ∈ G

– Check: Is ε(ξ)|σ constant?
Yes → Substitute G by G\{ξ}, go to (L)
No →

∗ Determine minimal face Γ of ∆, such that σ ⊂ Γ
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∗ Add (σ, UΓ) to the list of cells

∗ Replace G by G\UΓ, go to (L)

IV: Construct the boundary matrices:

• For all cells C = (σ, U):

– Let v0, . . . , vk be the the vertices of σ (in the order in which
T (0) is stored)

– Let i0, . . . , iα designate the indices of the vertices with posi-
tive sign

– Let j0, . . . , jβ designate the indices of the vertices with neg-
ative sign

– Set π to be the permutation (0 . . . i0)(i0 +1 . . . i1) . . . (iα−1 +
1 . . . iα)

– For all m = 0, . . . , k:

∗ Let σ′ be the simplex spanned by v0, . . . , v̂m, . . . , vk

∗ Let C ′ := (σ′, U ′) be the (unique) cell such that U ⊂ U ′

∗ If vm has positive sign and m = is −→ BM
(k)
C,C′ :=

(−1)β+s sign(π)

∗ If vm has negative sign and m = jt −→ BM
(k)
C,C′ :=

(−1)t sign(π)

• All other entries of the matrices BM (1), . . . , BM (d−1) are set to 0

(For an explanation of this part, see the discussion below)

V: Compute the homology groups:

• Calculate the Smith normal Form of BM (1), . . . , BM (d−1) (integer
coefficient case)

• Calculate the rank of BM (1), . . . , BM (d−1) mod p (mod p coeffi-
cient case)

(both are done with Maple built-in procedures)

• Interpret the results in terms of homology groups

B HS NrOfComp

Steps I-III are identical. It is enough, though, to consider cells of di-
mension 0 and 1 (or max-dimensional and codim 1-dimensional ones if
the hypersurface is known to be smooth).

IV: Determine the number of Components:
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• For each 1-cell (σ, U): (the smooth case is completely analo-
gous)

– Check: Is (∂σ, U) contained in the boundary of some com-
ponent in the current list?
No → Add new component {(σ, U)} to the list
Yes → Remove all such components C1, . . . , Cr and add a
new component

⋃r
i=1Ci ∪ {(σ, U)}

On the Orientation of the Cells

We begin with a reformulation of some well-known statements.

4.4.1 Definition: Let V be a real vector space and P ⊂ V a full-
dimensional polyhedron. An orientation on P is an ordered basis of
V (if P is not full-dimensional then consider P − x0 and the linear
space spanned by it for some x0 ∈ P ). Two orientations are said to lie
in the same orientation class if their transition matrices have positive
determinant.

Let F be a facet of P and −→n an outer normal vector of F . Let
(e1, . . . , ed) be an orientation on P . Let (e′1, . . . , e

′
d) be the orientation

obtained from the previous one by a rotation such that:

(i) e′k is the image of ek for k = 1 . . . d,

(ii) e′1 = α−→n for some α > 0,

(iii) (e′2, . . . , e
′
d) is an orientation on F .

Then (e′2, . . . , e
′
d) is called the induced (by the orientation on P ) orien-

tation on F .

For our purposes it is quite useful to reformulate these definitions
in terms of simplizes:

4.4.2 Proposition: The following definitions are equivalent to the
above ones:

An orientation on P is an ordered simplex σ in the affine hull of P ,
defined up to translation (ordered meaning, that the vertices of σ are
ordered). Two orientations lie in the same orientation class if they are
mapped to each other by a bijective affine linear map whose linear part
has positive determinant (i.e. σ̃ = v0 +Aσ where A has integer entries
and detA > 0).

Let F be a facet of P and σ = [v0 . . . vd] an orientation on P . Let
F̃ be the affine hull of F and P̃ be the half-space defined having F̃ as
boundary and containing P . Let σ′ = [v′0 . . . v

′
d] be the image of σ under
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an affine linear bijection with linear part having positive determinant
such that:

(i) v′k is the image of vk for k = 0 . . . d,

(ii) v′0 lies in the relative interior of P̃ ,

(iii) [v′1, . . . , v
′
d] is an orientation on F .

Then [v′1, . . . , v
′
d] is the induced (by σ) orientation on F .

Proof: This is a straightforward reformulation of the previous defini-
tions when setting ei := vi − v0. �

4.4.3 Proposition: Let σ = [v0 . . . vd] and σ′ = [vπ(0) . . . vπ(d)] be sim-
plizes with the same vertices, but different order. Then σ and σ′ lie in
the same orientation class if and only if sign(π) = 1. Identifying the
two possible classes with +1 and −1 we have

σ′ = (−1)sign(π)σ

(where the bars indicate the corresponding classes).

Proof: The map σ 7→ σ′ is given by a permutation matrix, which has
determinant 0 if and only if the permutation has signum 1, hence the
assertion. �

4.4.4 Corollary: Let σ = [v0 . . . vd] be a simplex and designate by
τi := [v0 . . . v̂i . . . vd] the i-th face of σ. Then the induced (by σ) orien-
tation class on τi is (−1)iτ i.

Proof: The assertion is easy to verify for i = 0. For i > 0 replace first
σ by σ′ := [viv0 . . . v̂i . . . vd]. The corresponding index permutation is
the cycle (0..i), hence σ′ = (−1)iσ by the proposition. �

Let K be a cell complex and for each σ ∈ K let o(σ) be an orienta-
tion on σ. Then the corresponding (integral) chain complex C• consists
of abelian groups

Ci := {
∑

finite

ajσj | σj ∈ K, dimσj = i, aj ∈ Z}

with boundary maps ∂ : Ci → Ci−1, defined by

∂σ =
∑

τ facet of σ

εττ
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with

ετ =






1, o(τ) and the orientation on τ induced by σ

lie in the same class,

−1, else.

4.4.5 Theorem: Let ∆ be a lattice polytope, T a lattice triangulation
of it, ε : T (0) → {±1} a sign function on the vertices and let any
ordering on T (0) be given.

Let Z ⊂ X∆ be the hypersurface constructed by combinatorial
patchworking and C• the integral chain complex corresponding to the
cell decomposition of Z induced by T , so

Ci := {
∑

finite

aσ(ξ)Zσ(ξ) | σ(ξ) ∈ ∆(•) non-empty, dim σ = i+ 1, aσ(ξ) ∈ Z}.

Then a “valid” boundary map (i.e. generated by a choice of orientation
on the Zσ(ξ)) is defined by the following:

∂Zσ(ξ) :=
∑

τ facet of σ,
ε(ξ)|τ non-constant

δτ (ξ)Zτ (ξ),

where δτ (ξ) is determined as follows:
With σ = [v0 . . . vd] (in the given order) let 0 = i0 < i1 < . . . < iα

designate the indizes such that ε(ξ)(vik) = ε(v
(ξ)
0 ) for all k = 0, . . . , α

and j0 < j1 < . . . < jβ the other indizes. In this notation, set

δτ (ξ) :=





(−1)l, σ(0) \ τ(0) = {vjl
},

(−1)αβ , σ(0) \ τ(0) = {v0} and ε(ξ)(v1) 6= ε(ξ)(v0),

(−1)β+k, else.

Proof: Let σ = [v0 . . . vd] ∈ T , ξ ∈ Hom(Zd, {±1}). Without loss
of generality, we may assume that ξ = id. We further assume that
σ is non-empty, that is, not all vertices have the same sign and that
ε(v0) = 1 (note, that the latter assumption makes the sign function well-
defined, no matter, which glueing-equivalent copy of σ we consider). To
simplify the notation we will write vk instead of vik and wl instead of
wjl

from now on.
Then we choose the following simplex as orientation on Zσ:

o(Zσ) :=
[

[v0w0][v0w1] . . . [v0wβ]

[v1w0] . . . [vαw0]
]
.
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This is indeed an orientation in the sense of proposition 4.4.2, i.e. a
full-dimensional simplex in Aff(Zσ), as the edges of o(Zσ) containing
[v0w0] are exactly the edges of Zσ containing [v0w0] (to verify this, note
that both are equal to the set {[v0vkw0] | 1 ≤ k ≤ α} ∪ {[v0w0wl] | 1 ≤
l ≤ β}).

Now let τ be a non-empty facet of σ. Then τ = [v0 . . . v̂k . . . vα . . .]
or τ = [. . . w0 . . . ŵl . . . wβ . . .]. We distinguish the following cases:

(i) 1 ≤ k ≤ α or 1 ≤ l ≤ β: Then

o(Zτ ) =
[

[v0w0][v0w1] . . . [v0wβ]

[v1w0] . . . [̂vkw0] . . . [vαw0]
]

resp.

o(Zτ ) =
[

[v0w0][v0w1] . . . [̂v0wl] . . . [v0wβ]

[v1w0] . . . [vαw0]
]
.

So, o(Zτ ) is the (β + k)-th resp. the l-th face of o(Zσ), hence by
corollary 4.4.4 the induced orientation is in the same class as o(Zτ )
if and only if (β + k) ≡ 0 mod 2 resp. l ≡ 0 mod 2.

(ii) l = 0: Then

o(Zτ ) =
[

[v0w1][v0w2] . . . [v0wβ]

[v1w1] . . . [vαw1]
]
.

Now we interchange the role of w0 and w1: As the vertices of σ
(without V0) form a basis for Aff(σ) − v0, this is realized by an
orientation-reversing map (given by w1 7→ w0, w0 7→ w1). The image
of Zσ is clearly Zσ itself as set, but as the orientation is reversed we
write −Zσ for it. Then

o(−Zσ) =
[

[v0w1][v0w0] . . . [v0wβ] (∗)

[v1w1] . . . [vαw1]
]
.

So o(Zτ ) is the first facet of o(−Zσ) (beginning to count with 0), so

o(Zτ ) = −o(−Zσ) = o(Zσ).
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(iii) k = 0: In the case that ε(v1) = 1 an analogous argument as in (ii)
shows that o(Zτ ) = (−1)βo(Zσ). If ε(v1) = −1, then to fit in the
previous arguments we have to replace ε by −ε, thus interchanging
the role of the vk’s and the wl’s. So,

o(Zτ) =
[

[w0v1][w0v2] . . . [w0vα]

[w1v2] . . . [wβv2]
]
.

Changing the ordering of the vertices in o(Zτ ) and writing vkwl

instead of wlvk we get

o(Zτ ) = λ
[

[v1w0][v2w1] . . . [v2wβ] (∗)

[v2w0] . . . [vαw0]
]
.

Clearly, for each k = α, . . . , 2 there have to be performed β transpo-
sitions, so λ = (−1)(α−1)β . Now, (∗) without the factor λ is exactly
the same as if ε(v1) had been positive. By applying the previous
results, we conclude that

o(τ) = (−1)(α−1)β+β = (−1)αβ.

�

Runtime issues

Time and memory consumption are major issues for the practical appli-
cation of the algorithm. Both tend to explode with increasing dimen-
sion and number of simplizes. As this is a problem-inherent behaviour
and thus cannot be effectively overcome, it remains to hope that the
limit is far away enough to compute at least some interesting examples.
Fortunately, in the actual implementation and today’s (2010) personal
computer abilities, this is just about the case: The calculation time for
the examples in the subsequent sections ranged from about one minute
for the smallest ones up to an indefinite time for the largest, when
Maple crashed due to memory problems (Maple does not seem to work
with matrices much larger than 4000 × 4000 5, although the installed
memory should be sufficient to contain them).

5More precisely, the maximal size depends on the type of the matrix: work-
ing with bounded integers instead of unlimited ones, or declaring the matrices as
sparse allows bigger matrices. Unfortunately the Maple procedure that computes
the Smith normal form seems to internally use only general matrices.
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While we tried to make the program as fast as possible within the
chosen setting (making the code much less legible) there is still plenty
of room for improvements of the efficiency:

First of all, Maple is not really well-suited for time-critical calcula-
tions. It’s the price to pay for its “mathematical understanding”, exact
arithmetic, large functionality available under a single surface, auto-
matic memory handling etc. An implementation of the same algorithm
in a lower-level language such as C/C++ or similar, should speed up
things considerably, but would also cost considerably more effort for
the development.

Runtime analysis of the different parts of the program shows that
by far the most time-consuming step (> 95%) is the calculation of the
Smith normal form of the boundary matrices (with integer coefficients;
with mod p coefficients this step is effectuated a lot faster). There
exist much more efficient algorithms for that problem than those built
in in Maple, especially for sparse matrices which we have here (see
e.g. [Gbr] or [DSV]). The latter authors claim (in 2001) that they
successfully worked with sparse matrices having about 105 rows and
columns. However, these algorithms have two small drawbacks also:
One is, that they are probabilistic algorithms. So, it might happen,
though highly improbably, that the result is wrong. The other is, that
they do not calculate the transformation matrices. This would not be
a problem in our program as we dot not need them. But in further
applications they might be useful.

A further source of speed-up (and much in the trend of today’s time)
could be provided by parallelization. Indeed, most operations in the
loops of each single step I-V are independent. Parallel programming
functionality is even provided in newer versions of Maple (in order to
make full use of the power of multi-core processors), but is not rec-
ommended yet by the developers because it has not been sufficiently
tested.

Future Versions

The implemented version of the algorithm was conceived as a starting
point for further development. Indeed, there are many ideas to improve
the program and enlarge its functionality:

On one hand, as has become clear from the discussion above, an
implementation in a low-level programming language using fast, prob-
abilistic algorithms for the computation of the Smith normal form,
would be very desirable.

On the other hand, additional features could include:
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• Calculate the image of a cycle in the homology groups (this re-
quires the knowledge of the transformation matrices and thus
seems not to be possible using the fast algorithms for the Smith
normal form as presented above).

• Relative Homology

• Homology of Z\A, where A is a subcomplex.

• Homology of a desingularization of the hypersurface.
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4.5 Euler Characteristic and Betti Num-

bers

In this section we show that Z/2Z-Betti numbers of a real Calabi-Yau
toric hypersurface is independent of the chosen toric MPCP-desingularization,
which is an analogue to an aforementioned result of Batyrev on com-
plex Calabi-Yau varieties. We conjecture that this is not true for Betti
numbers with integral coefficients.

The main part of the section is then devoted to the calculation of
the Euler characteristic of those hypersurfaces constructed using Viro’s
patchworking method. We show, that if the triangulation used in the
patchworking method is unimodular, then the Euler characteristic is
independent of the particular choice of the triangulation and of the
sign function on its vertices. For real K3 surfaces it turns out, that
only two different types of surfaces are obtained in this way.

If the Euler characteristic is known (e.g. for odd-dimensional vari-
eties it must always be zero) this allows us to derive a relation between
a reflexive polytope and its dual.

4.5.1 Proposition: Let ∆ ⊂ Rd be a reflexive polytope, Z a ∆-regular
hypersurface and Z̃ the real Calabi-Yau variety resulting from a toric
MPCP-desingularization ϕ. unimodular triangulation of ∂(∆∗). Then
the cohomology groups with Z/2ZZ-coefficients do not depend on the
particular choice of the desingularization.

Proof: From the stratification of Z into intersections with torus orbits,
additivity of the virtual Poincaré polynomial β (see proposition 2.3.2)
and theorem 4.1.9, it follows that

β(Z̃; t) = β(
⋃

Γ face of ∆

ϕ−1
T (ZΓ; t)

= β(
⋃

Γ

ZΓ × ϕ
−1
Γ∗,T (pΓ∗ ; t)

=
∑

Γ

β(ZΓ; t)β(ϕ−1
Γ∗,T (pΓ∗ ; t).

As the virtual Poincaré polynomial of a smooth real local toric Calabi-
Yau variety does not depend on the triangulation (see proposition
3.2.6), the right-hand term of the above equation does not depend
neither, and hence the same is valid for the whole sum. But Z̃ is a
smooth compact real algebraic variety and hence virtual and classical
Betti numbers coincide. The cohomology groups are defined (up to
isomorphism) by their dimension, which concludes the proof. �
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4.5.2 Conjecture: There are real Calabi-Yau toric hypersurfaces Z̃
and Z̃ ′, MPCP-desingularizations of the same ∆-regular hypersurface
Z, such that the cohomology groups with integral coefficients of Z̃ and
Z̃ ′ are not isomorphic.

Evidences: The situation reminds much that of real local toric Calabi-
Yau varieties. As these describe the local situation in the desingular-
ization, it is to expected that also the compact varieties show the same
behaviour. We are quite optimistic for example, that for ∆ the 4-
dimensional cross-polytope (with ∆∗ the 4-cube) this result should be
achievable the following two triangulations on the 2-dimensional faces
of ∆, which are 2-cubes (this is sufficient to determine the desingular-
ization): One is the barycentric subdivision, which produces 2-torsion
in the cohomology groups of the local varieties. The other trianguliza-
tion is attained from the first one by flipping the diagonal edges. Then
the local cohomology groups have no 2-torsion. We expect the same
behaviour also on the compact varieties.

There should be means to control global effects on the local co-
homology by analyzing the long excision cohomology sequence, where
we “cut out” neighbourhoods of the singularities. This needs some
knowledge about the map of cohomology groups of the boundary of
these neighbourhoods into that of the varieties (with neighbourhoods
cut out). We know these boundaries quite well (they are orientable
surfaces of genus 6) and we hope to get informations on the map by a
future version of our computer program. But this has not been realized
yet.

We now turn to the calculation of Euler characteristics for Calabi-Yau
toric hypersurfaces which have been constructed with combinatorial
patchworking.
Let ∆ ⊂ Rd be a lattice polytope, T a triangulation of it.
For any σ ∈ T let Γσ denote the minimal face of ∆ containing σ. We
set

Gσ := SΓσ
,

where we recall from section I.2 that SΓσ
= Hom

(
Lin(Γσ) ∩ Zd, {±1}

)

is a F2-vector space of dimension dim Γσ. We further recall that for
σ ⊂ σ′ we have a natural inclusion Γσ ⊂ Γσ′ and that any ξ ∈ Γσ can
naturally be regarded as linear form on (F2)

d.

4.5.3 Proposition: Let ∆ ⊂ Rd be a d-dimensional lattice polytope
and T a lattice triangulation of it. Let TX∆

be the induced triangulation
of the real toric varietyX∆. Then for any σ ∈ T there are exactly 2dimΓσ

copies of σ in TX∆
, one for each ξ ∈ Gσ.
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Proof: As for any face Γ of ∆ the copies Γ(ξ) and Γ(ξ′) are identified
exactly when ξ ≡ ξ′ mod N∆/Γ the remaining copies of Γ in TX∆

are
in one-to-one correspondence to S∆/N∆/Γ, which is isomorphic to SΓ

by proposition 1.2.24. �

Let σ ∈ T be fixed for the following considerations and denote
by v0, v1, . . . vk its vertices. In Viro’s patchworking method any sign
functions on the vertices defines a simplex separating positive from
negative signs. It is clear that reversing all signs leads to the same
simplex, so we can always assume that v0 carries a positive sign. Thus
we restrict our attention to the following set of sign functions

Eσ := {ε : {v1, . . . , vk} → {±1}}.

Gσ operates on Eσ by

ε(ξ)(vi) := ξviε(vi).

(This notation is consistent with the fact, that ε(ξ) denotes the sign
function on σ(ξ).)

We will write [ε] for the orbit of ε under the action of Gσ and 1 for
the function ε such that ε(vi) = 1 for all i = 1, . . . , k.

The stabilizer (of any ε ∈ Eσ) is

Stσ := {ξ ∈ Gσ | ξ
vi = 1 ∀i = 1, . . . , k}.

As we may replace vi by vi ∈ Z/2Z we get

Stσ = {ξ ∈ Gσ | ξ|Lin2(σ) ≡ 1}.

Remark: We can naturally identify Gσ/Stσ with Hom
(
Lin2(σ), {±1}

)
.

In particular, |Stσ| = 2dimΓσ−dim2 σ.

4.5.4 Proposition: For any εσ ∈ Eσ the orbit [εσ] contains exactly
2dim2 σ sign functions and Eσ contains exactly 2dimσ − dim2 σ different or-
bits.

Proof: The length of an orbit is equal to

|Gσ|/|Stσ| = 2dimΓσ/2dimΓσ−dim2 σ

= 2dim2 σ.

The second statement follows immediately with |Eσ| = 2dimσ. �



4.5 Euler Characteristic and Betti Numbers 121

In the following let ∆ ⊂ Rd be a lattice polytope and T a coherent
lattice triangulation of it. We set fi := #T (i) and

fi,j := #{σ ∈ T | dimΓσ = j}.

In particular fi,j = 0 if i > j and
∑

j fi,j = fi.

Let ε be a sign function on the vertices of the triangulation and Z
the hypersurface constructed by patchworking using these data. For
any σ ∈ T let εσ be the sign function ±ε|σ such that there is a vertex
with positive sign (which takes the role of v0).

4.5.5 Theorem: The Euler number of Z can be expressed as

χ(Z) =
n∑

i=1

(−1)i−1
n∑

j=i

2jfi,j

−
n∑

i=1

(−1)i−1

n∑

j=i

∑

σ∈T (i):
dim Γσ=j
1∈[εσ]

2j−dim2 σ.

Remark: Note that the first term in the above formula does not de-
pend on the choice of signs. With additional assumptions it does neither
depend on the triangulation, as we will show later.

In the second term, there is a choice to make for the signs of every
simplex σ with dim2 σ < dim σ. As it is easy to see, choosing them in
the orbit of 1 makes the Euler number smaller, choosing them otherwise
makes it bigger. But unfortunately, depending on the triangulation,
these choices may not be done independently for each σ ∈ T (d).

Proof: We know that Zσ(ξ) = ∅ if and only if the sign function ε
(ξ)
σ = 1.

In the other cases, it is a (dimσ−1)-cell. So we get a cell decomposition

{Zσ(ξ) | σ ∈ T with dim σ ≥ 1, ξ ∈ Γσ such that ε(ξ)
σ 6= 1}

of Z. Note that if 1 ∈ [εσ], then

#{ξ ∈ Gσ | ε
(ξ)
σ = 1} = |Stσ| = 2dimΓσ−dim2 σ.
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So the Euler characteristic of Z amounts to

χ(Z) =
∑

σ∈T ,dimσ≥1

∑

ξ∈Gσ:

ε
(ξ)
σ 6=1

(−1)dimσ−1

=
∑

σ∈T

∑

ξ∈Gσ

(−1)dim σ−1 −
∑

σ∈T

∑

ξ∈Gσ:

ε
(ξ)
σ =1

(−1)dim σ−1

=

n∑

i=1

n∑

j=i

∑

σ∈T (i):
dimΓσ=j

∑

ξ∈Gσ

(−1)i−1

−
n∑

i=1

n∑

j=i

∑

σ∈T (i):
dim Γσ=j
1∈[εσ]

∑

ξ∈Gσ :

ε
(ξ)
σ =1

(−1)i−1

=
n∑

i=1

(−1)i−1
n∑

j=i

fi,j2
j −

n∑

i=1

(−1)i−1
n∑

j=i

∑

σ∈T (i):
dimΓσ=j
1∈[εσ]

2j−dim2 σ

�

Remark: One can also write the formula as follows:

χ(Z) =− χ(X∆) +
n∑

l=0

2lχ(∆̃(l))

+

n∑

i=1

(−1)i
n∑

j=i

2j−i
[
−f−

i,j +

i−1∑

k=0

(2i−k − 1)f+
i,j,k

]
,

where

∆̃(l) :=
⋃

σ∈T :
dimΓσ=dimσ+l

σ,

fi,j,k denotes the number of simplizes σ ∈ T with dim σ = i, dim Γσ = j
and dim2 σ = k and the (+) denotes the number of respective simplizes
σ for which εσ ∈ [1] (and (−) denotes the number of other ones).

Again, the first line in the formula is independent of triangulation
and sign function, whereas the dependent part is encoded in the second
line.
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Proof: We have

χ(Z) =

n∑

i=1

(−1)i−1

n∑

j=i

[
2jfi,j −

∑

σ∈T (i):
dim Γσ=j

εσ∈[1]

2j−dim2 σ

]

=

n∑

i=1

(−1)i−1

n∑

j=i

[
2jfi,j −

i∑

k=0

2j−kf+
i,j,k

]

=
n∑

i=1

(−1)i−1
n∑

j=i

[
2jfi,j − 2j−i

i∑

k=0

2i−k(fi,j,k − f
−
i,j,k)

]

=

n∑

i=1

(−1)i−1

n∑

j=i

[
(2j − 2j−i)fi,j

− 2j−i

(
−f−

i,j +

i∑

k=0

(2i−k − 1)(fi,j,k − f
−
i,j,k)

)]
.

Now it is enough to calculate the first part:

n∑

i=1

(−1)i−1
n∑

j=i

(2j − 2j−i)fi,j

=

n∑

i=0

(−1)i−1

n∑

j=i

(2j − 2j−i)fi,j .

The first term of this amounts to

n∑

j=0

2j

j∑

i=0

(−1)i−1fi,j

=−
n∑

j=0

2jχ(Int(∆(j)))

=− χ(X∆),

whereas the second can be transformed to

n∑

l=0

n−l∑

i=0

(−1)i2lfi,i+l
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with the change of variables l := j − i, which concludes the proof.
�

Example:

a) It follows a very easy example, in order to make the notation clear
(see figure 4.24):

Figure 4.24: Triangulation of ∆

The matrix (fi,j) is given as follows:




3 2 0
0 5 2
0 0 3





There are exactly one 2- and one 3-dimensional simplex, for which
dim2 σ = dim σ − 1 (the dotted, respectively the grey one in figure
4.24), for all other ones dim2 σ = dim σ. So there are (mainly) two
choices for the sign functions, which are shown in figures 4.25 and
4.26.

Figure 4.25: Sign function
and curve, case a)

Figure 4.26: Sign function
and curve, case b)

So, with the first formula, the independent part of the Euler char-
acteristic amounts to



4.5 Euler Characteristic and Betti Numbers 125

χ1 = (1 · 0 + 2 · 5 + 4 · 2)

− (1 · 0 + 2 · 0 + 4 · 3)

= 6.

The part, that depends on the choice of signs, amounts to

χ2 = (1 · 4 + 2 · δ + 2 · 2)

− (1 · 2 + 2 · δ)

= 6,

where δ = 1 in case a) and δ = 0 in case b). In all cases χ(Z) =
χ1 − χ2 = 0 as it should be for a real compact curve.
We can also get this result with the second formula. Here the inde-
pendent term amounts to

χ1 =− χ(RP2) + 1 · (3− 5 + 3) + 2 · (2− 2) + 4 · 0

=− 1 + 1 = 0.

In case a) we have f−
i,j = 0 for all i, j and f+

1,1,0 = f+
2,2,1 = 1, whereas

the other f+
i,j,k are zero for k ≥ 1. So

χ2 =− 1 · 1 + 1 · 1 = 0.

In case b) we have f−
1,1 = f−

2,2 = 1 and all other f−
i,j = 0, whereas

f+
i,j,k = 0 for all k ≥ 1. So,

χ2 = 1 · 1− 1 · 1 = 0.

Again, in all cases χ(Z) = χ1 − χ2 = 0.

b) Let ∆′ ⊂ R2 be the triangle with vertices (0, 0), (6, 0), (0, 6) with
a maximal coherent triangulation T ′. Let ∆ ⊂ R3 be the simplex
spanned by ∆′ × {0} and the point p := (0, 0, 2) (note that ∆ is
a reflexive polytope). Be T the induced triangulation on ∆. By
setting signs on the vertices get two related real varieties: Z ′ ⊂
X∆′
∼= RP2 which is a curve of degree 6 and hence divides RP2 into

two sets, which we call P2
+ and P2

−. The other one is Z ⊂ X∆ which
is a double covering of either P2

+ or P2
−, branched along Z ′. We
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assume that the sign at p is positive, then Z is a double covering of
P2
− and we know that the Euler characteristic is

χ(Z) = 2χ(P2
−) = 2− 2χ(P2

+).

We can recover this result by the above generic formula for the Euler
characteristic of Z: First we note, that P2

+ is homeomorphic to the
following simplicial subcomplex of X ′

∆:

X∆′,+ :=
⋃

σ′∈T ′

∆,εσ′∈[1]

σ′

and analogously for P2
−.

We have the following matrix (f ′
i,j) = (fi,j(∆

′)):




3 15 10
0 18 45
0 0 36




We define the matrix (gi,j) := (fi,j − f
′
i,j). Because of the special

triangulation fi,j = gi+1,j+1 for all i, j = 0, . . . , 2 and g0,0 = 1. Note,
that T ′ is unimodular and hence for any σ′ ∈ T ′ all signs are equal
(either all positive or all negative) in exactly one copy of the sign
function εσ′ . Let f+

i,j be the number of those simplizes where these
signs are positive.
For the simplizes in T \T ′ of the form σ = pσ′, where σ′ ∈ T ′, the
situation is the following: The sign function εσ is in the orbit of 1
if and only if σ′ counts to some f+

i,j. Furthermore, the dimension
dim2 σ = dim σ − 1 if and only if σ′ has a vertex where all coor-
dinates are even. We call such a simplex an even simplex. In the
other cases dim2 σ = dim σ, and we call σ′ in this case odd simplex.
We introduce the following notation: Be fi,j,e the number of even
simplizes (counting to fi,j and fi,j,o the number of odd ones.
Now we are able to calculate the Euler characteristic: The sign
independent part amounts to

χ1 = 2 · (3 + 18) + 4 · (15 + 45) + 8 · 10

− (4 · (18 + 36) + 8 · 45)

+ (8 · 36)

= 74.

The dependent part amounts to



4.5 Euler Characteristic and Betti Numbers 127

χ2 = 1 · f1,1 + 2 · f+
0,0 + 2 · f1,2 + 2 · f+

0,1,o + 4 · f+
0,1,e + 4 · f+

0,2,o + 8 · f+
0,2,e

− 1 · f2,2 − 2 · f+
1,1 − 2 · f+

1,2,o − 4 · f+
1,2,e + f+

2,2,

where we note that f0,0 = f0,0,e and f1,1 = f1,1,e. The part without
pluses amounts to 72 and it is not difficult to check that the rest
amounts to 2χ(P2

+). So, altogether, we get

χ(Z) = χ1 − χ2 = 74− 72− χ(P2
+) = 2− 2χ(P2

+)

as we already knew.

Remark: This result is also true for general coherent triangulations of
∆′.

4.5.6 Proposition: If T is a unimodular triangulation of ∆, then the
numbers fi,j do not depend on the particular choice of triangulation.

Proof: We already know by corollary 1.2.14 that the numbers fi =∑
j fi,j do not depend on the triangulation. We proceed by induction

on j to show that also the fi,j are independent.
For j = 0 the assertion is clear, as f0,0 is the number of vertices of

∆ and fi,0 = 0 for i > 0. So assume now, that assertion is true for all
lattice polytopes and all j = 0, . . . , k − 1 for some k ≥ 1. We show
now, that it is also true for j = k.

For any σ ∈ T we note, that Γσ is the unique face Γ of ∆ such that
σ ∩ Int(Γ) 6= ∅. So, we can write

fi,k =
∑

Γ∈∆(k)

#{σ ∈ T (i) | σ ∩ Int(Γ) 6= ∅}

=
∑

Γ∈∆(k)

[
#{σ ∈ T (i) | σ ⊂ Γ} −#{σ ∈ T (i) | σ ⊂ ∂Γ}

]

=
∑

Γ∈∆(k)

fi(Γ)−
∑

Γ∈∆(k)

∑

F proper face of Γ

#{σ ∈ T (i) | σ ∩ Int(F ) 6= ∅},

where we write fi(Γ) (and henceforth also fi,k(Γ) ) for the numbers
defined by the induced triangulation on Γ.

The first term of the above equation is independent of the triangu-
lation by corollary 1.2.14. The second sum in the right hand term of
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the above equation is equal to

k−1∑

j=0

∑

F∈Γ(j)

#{σ ∈ T (i) | σ ∩ Int(F ) 6= ∅}.

The second sum is equal to fi,j(Γ) and is thus by induction hypothesis
independent of the triangulation. �

4.5.7 Proposition: Let T be a unimodular coherent triangulation of
a lattice polytope ∆ and Z the real hypersurface of X∆ defined by some
choice of signs on the vertices of T . For any σ ∈ T (i) with dim Γσ = j
there are 2j copies of σ in TX∆

. Of those, 2j−i have empty intersection
with Z. In particular, these numbers are independent of the choice of
signs.

Proof: We already shown previously the statement on the numbers of
copies of σ in TX∆

.

To prove the second statement let v0, . . . , vi designate the vertices of
σ. As T is unimodular, v1−v0, . . . , vi−v0 are part of a Z-basis of Zd, v1−
v0, . . . , vi−v0 are part of a F2-basis of (Z/2)d, hence dim2 σ = dim σ = i.
So, by proposition (4.5.4), there is only one orbit for the sign functions,
and hence, independently of the original choice of sign function, the
function 1 occurs 2j−i times, which is, where the intersection with Z is
empty.

�

4.5.8 Proposition: With the hypotheses of the previous proposition,
the Euler number of Z is

χ(Z) =

n∑

i=1

(−1)i−1(2i − 1)

n∑

j=i

2j−ifi,j .

In particular, it is independent of the triangulation and the choice of
signs on the vertices.

Proof: From the previous proposition we get, that in the right term of
theorem (4.5.5) the condition εσ ∈ [1] is always fulfilled and dim2 σ =
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dim σ for all σ ∈ T . So we get

χ(Z) =

n∑

i=1

(−1)i−1
n∑

j=i

∑

σ∈T (i):
dimΓσ=j

(2j − 2j−i)

=

n∑

i=1

(−1)i−1

n∑

j=i

fi,j2
j−i(2i − 1)

=
n∑

i=1

(−1)i−1(2i − 1)
n∑

j=i

2j−ifi,j.

�

4.5.9 Proposition: Let ∆ be a reflexive 3-dimensional polytope, T
a unimodular coherent triangulation and Z a real hypersurface in X∆

constructed by Viro’s method. Then

χ(Z) = 8− f1,1.

Proof: In a first step we claim that the following equations are true:

a) f0,3 = 1,

b) f1,3 − f2,3 + f3,3 = 2,

c) f3,3 = f2,2,

d) f2,3 = f1,2 + f1,1.

By proposition 1.2.4, 0 is the only interior point of ∆, which shows a).
To show b) we note, that

∑3
i=0 fi,3 = χ(Int∆) = −1. Using (a) one

gets the desired result.
Now we use the fact that the numbers fi,j are independent of the

triangulation, so we can choose the following special one to show the
statements: We take T to be induced by a maximal lattice triangulation
of the boundary of ∆. So, if σ ∈ T , then σ = 0σ′ where σ′ is a simplex
of the triangulation of ∂∆. Now let σ be any i-dimensional simplex
with dim Γσ = 3 (for 1 ≤ i ≤ 3). Then σ = 0σ′ with σ′ a simplex in
∂∆. On the other hand, a simplex σ′ in ∂∆ defines a unique simplex
σ = 0σ′ in ∆. So we have

fi,3 =
2∑

j=0

fi−1,j =
2∑

j=i−1

fi−1,j

for i = 1, 2, 3. The case i = 3 yields equation (c), the case i = 2 yields
equation (d).
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Now we define the following polynomial e ∈ Z[t]:

e(t) :=
3∑

i=1

(−1)i−1[(t+ 1)i − 1]
3∑

j=i

fi,j [(t+ 1)j−i].

This is made such, that χ(Z) = e(1) (see 4.5.8).
Carrying out the multiplications, we get

e(t) =t [f1,1 + f1,2 + f1,3 − 2f2,2 − 2f2,3 + 3f3,3]

+t2 [f1,2 + 2f1,3 − f2,3 − f2,2 − f2,3 + 3f3,3]

+t3 [f1,3 − f2,3 + f3,3].

Using equation (b) in all three terms, we arrive at

e(t) =t [2 + f1,1 + f1,2 − 2f2,2 − f2,3 + 2f3,3]

+t2 [4 + f1,2 − f2,2 − f2,3 + f3,3]

+2t3.

Now we use equation (c). The expression simplifies to

e(t) =t [2 + f1,1 + f1,2 − f2,3]

+t2 [4 + f1,2 − f2,3]

+2t3.

With the final use of equation (d) we get

e(t) = 2t+ (4− f1,1)t
2 + 2t3.

Substituting t = 1 yields the assertion. �

4.5.10 Proposition: a) Let ∆ be a 3-dimensional reflexive polytope
and Z a real ∆-regular hypersurface in X∆. Let ∆∗ be the dual
polytope of ∆ and given a unimodular triangulation T on ∂(∆∗)
defining a toric MPCP-desingularization ϕ of X∆, respectively Z.
Then Zsing consists of a finite number of points. For any p ∈
Zsing there exists an edge θ∗(p) ⊂ ∆∗ such that p is contained in
Z ∩ Ocone(θ∗). Furthermore, p has an analytical neighborhood U in
Z, such that U is analytically isomorphic to the real toric variety
XΣ(θ∗). The MPCP-desingularization on U is then equivalent to the
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desingularization of XΣ(θ∗) defined by the induced triangulation on
θ∗, that is, there is a commutative diagram

ϕ−1(U)

��

∼= // XΣ(θ∗,T )

��

U
∼= // XΣ(θ∗)

,

where the horizontal maps are analytical isomorphisms and the ver-
tical maps are the desingularizations defined by T . So, in partic-
ular the fiber of p in the MPCP-desingularization is isomorphic to
the fiber of the torus-invariant point xθ∗ in the desingularization
XΣ(θ∗,T ) → XΣ(θ).

b) Assume, that furthermore Z is constructed by Viro’s patchworking
method using a unimodular coherent triangulation T of ∆. Then
for each edge θ ∈ ∆(1) with dual edge θ∗ ∈ ∆∗(1), Z ∩ Ocone(θ∗)

consists of vol(θ) points. These points are singularities of Z if and
only if vol(θ∗) > 1.

Proof: To a): The singularity locus of X∆ is a union of torus orbits
of dimension at most 1. As the torus orbits are met transversally by
Z, Zsing has dimension at most 0. For the other statements, see [Bat],
theorems 3.1.5 and 4.2.4, compare also theorem 4.1.9 in this work .

To b) Let σ ∈ T (1) be any simplex such that σ ⊂ θ. TX∆
contains

exactly two copies of σ, call them σ and σ′. As T is unimodular, we
may assume, that σ = [0, 1]. If ε and ε′ are the sign functions on σ and
σ′ used in the construction of Z, then ε(0) = ε′(0) and ε(1) = −ε′(1).
So, either σ or σ′ carries equal signs on its vertices and the other one
different signs. It follows that Z ∩ (σ∪σ′) consists of a single point and

Z ∩Ocone(θ∗) =
⋃

σ∈T (1),σ⊂θ

Z ∩ (σ ∪ σ′),

consists of one point per 1-simplex in θ.
By a), any such point is nonsingular if and only if the surface XΣ(θ∗)

is nonsingular. But this is clearly exactly the case, if θ∗ has length 1. .
�

4.5.11 Corollary: Let ∆ be a 3-dimensional reflexive polytope with
a unimodular triangulation and Z the hypersurface in X∆ assigned to
some sign function. Let Z̃ be the MPCP-desingularization induced by
a unimodular triangulation of ∂∆∗.

Then
χ(Z̃) = −16.
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Proof: Let p be a singularity and θ∗(p) the corresponding face of ∆∗.
In the resolution Z̃ we replace U(p) with Euler characteristic 1 by a
real local toric CY-surface, whose Euler number is 2 − vol(θ∗) (note
that we can use this description also if vol(θ∗) = 1, where we replace
1 by 1). So there is one singularity to resolve for each one-dimensional
simplex in ∆(1). With f1,1 =

∑
θ∈∆(1) vol(θ) we get

χ(Z̃) = 8− f1,1 −
∑

θ∈∆(1)

vol(θ) +
∑

θ∈∆(1)

vol(θ)(2− vol(θ∗))

= 8−
∑

θ∈∆(1)

vol(θ)vol(θ∗)

= −16

where the last equation follows from proposition 1.2.5. �

4.5.12 Proposition: There are two topological types of real K3 sur-
face with Euler characteristic -16 (a sphere plus oriented surface of
genus 10, and an oriented surface of genus 9). Both can be realized
with the above described method using a unimodular triangulation for
the combinatorial patchworking.

Proof: For the possible topological types of the K3 surfaces see the
classification in table 4.1 (with b = 2). They are distinguished by their
number of connected components, namely one or two.

Both can be realized with the 3-cube as polytope and the barycentric
triangulization: Take all signs +1 in one case, and change the sign of
the inner point to −1 in the second case. It is not difficult to verify that
the latter one has at least two components one of which is a 2-sphere.
A sketch how to verify manually the number of components in the first
example is given e.g.:

Look at the copy ∆(ξ) with ξ = (−1,−1,−1) and ∆ the cube.
Then only the inner point of ∆(ξ) and the 12 inner points of its edges
have positive sign. So the hypersurface in ∆(ξ) looks like a sphere
with 12 tubes sticking out in direction of the edges. Assume now
that the hypersurface had a second component. This must lie in the
remaining copies (ξ 6= (1, 1, 1), (−1,−1,−1)) of ∆. Assume further
that one of these remaining copies ∆(ξ′) does not contain any part
of this second component. Permuting indices and using the symme-
try of the whole construction shows that ∆(ξ′) must intersect a third
component. But this is impossible due to our knowledge of real K3
surfaces. So the second component already intersects all 6 copies ∆(ξ)
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with ξ 6= (1, 1, 1), (−1,−1,−1). But such a “long” component does not
exist as can be verified relatively easily.

An alternative is to the Maple procedure “HS NrOfComp” we wrote
especially for this case (see ...). �

By Poincaré duality we know that the Euler characteristic must be
zero. The combinatorial formula derived above then allow us to derive
relations between dual pairs of 4-dimensional reflexive polytopes:

4.5.13 Proposition: Let ∆ be a reflexive 4-dimensional polytope. Then

−15f4,4 + 14f3,4 + 7f3,3 − 12f2,4 − f2,3 − 3f2,2 + f1,4 + 4f1,3 + 2f1,2 + f1,1

=
∑

F∈∆(2)

l∂(F )(2− l(F ∗))−
∑

Θ∈∆(1)

vol(Θ)(3− l∂(Θ∗)),

where we write fi,j for fi,j(∆) and l∂ to denote the number of lattice
points in the boundary.

Proof: Let Z̃ be any real Calabi-Yau toric hypersurface constructed
by combinatorial patchworking in ∆ and a unimodular triangulation
T of ∆∗. The left hand side of the above equation is just proposition
4.5.8 for Z. The term on the right hand side is induced by the desin-
gularization. Running along the same line as in proposition 4.5.10 and
using theorem 4.1.9 (in particular its notation) and the results on the
Euler characteristic of real local toric Calabi-Yau varieties we come to
the following conclusions:

• For each 2-dimensional face F of ∆, ZF is 1-dimensional and its
desingularization is described by the 1-dimensional face F ∗ and
the corresponding real local toric K3 surface XΣ(F ∗,T ). For each
2-dimensional simplex σ in the triangulation of F , ZF ∩ Intσ is
homeomorphic to the open interval I◦. In Z̃ this gets replaced by
I◦ × ϕ−1

F ∗,T (x∗F ), thus accounting for an additional −(2 − l(F ∗))
in the Euler characteristic. As exactly 3 copies of σ carry non-
constant signs, this happens three times.

For each 1-dimensional simplex σ in the triangulation of F , ZF ∩
Intσ is homeomorphic to a point. In Z̃ this gets replaced by
ϕ−1

F ∗,T (x∗F ), thus accounting for an additional (2 − l(F ∗)) in the
Euler characteristic. As exactly 2 copies of σ carry non-constant
signs, this happens two times.

• For each 1-dimensional face Θ of ∆, ZΘ is a point and its desingu-
larization is described by the real local toric K3 surface XΣ(Θ∗,T ).
Only 1-dimensional simplizes of the triangulation of Θ come into
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account. The intersections ZΘ ∩ Intσ are points, which get re-
placed in Z̃ by ϕ−1

Θ∗,T (x∗Θ), accounting for an additional (3−l∂(Θ∗))
in the Euler characteristic. As exactly 1 copy of σ carries non-
constant signs, this happens exactly once.

As we know that the Euler characteristic of Z̃ is zero, we take the above
determined terms on the right-hand side of the equation and thus get

LHS =3
∑

F∈∆(2)

vol(F )(2− l(F ∗))− 2
∑

F∈∆(2)

f1,2(F )(2− l(F ∗))

−
∑

Θ∈∆(1)

vol(Θ)(3− l∂(Θ∗)).

Putting the first two terms of the right-hand side together and writ-
ing κ, κ∂ and κ∗ for for the number of edges, number of edges in the
boundary resp. number of edges in the interior of F in any unimodular
triangulation, we get

∑

F∈∆(2)

(3vol− 2κ∗)(2− l∂(F ∗).

As by the Euler characteristic of F we have

vol− κ∂ − κ∗ + l = 1

and
vol = l + l∗ − 2

(see 1.2.11) we simplify

(3vol− 2κ∗) = vol + 2(1 + κ∂ − l)

= l + l∗ − 2 + 2 + 2κ∂ − 2l

= −l + l∗ + 2κ∂

= −l∂ + 2κ∂

= l∂,

where the last equality is due to the obvious fact κ∂ = l∂. This con-
cludes the proof. �

4.6 Computer experiments

The Experiments

A The 4-dimensional Small Simplex
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• ∆ = conv(e1, . . . , e4,−e1 − . . .− e4),

• ∆ ∩ Z4 = {0, e1, . . . , e4,−e1 − . . .− e4},

• Triangulation: unique,

• χ(Z) = 0.

Sign function H0 H1 H2 H3

all vertices ‘+’: Z Z/2 0 Z
0 gets ‘−’: Z2 Z/2 0 Z2

Remark: All combinatorially distinct sign distributions were tested.

B The 4-dimensional Crosspolytope

• ∆ = conv(±e1, . . . ,±e4),

• ∆ ∩ Z4 = {0,±e1, . . . ,±e4},

• Triangulation: unique,

• χ(Z) = 24.

Sign function H0 H1 H2 H3

all vertices ‘+’: Z2 Z4× Z/2 Z34 Z8

e1: ‘−’: Z Z/2 Z31 Z8

e1, e2: ‘−’: Z2 Z4× Z/2 Z34 Z8

e1, e2, e3: ‘−’: Z2 Z4× Z/2 Z34 Z8

e1, . . . , e4: ‘−’: Z2 Z4× Z/2 Z34 Z8

Remark: All combinatorially distinct sign distributions were tested.

C The 4-dimensional Cube

• ∆ = [−1, 1]4,

• ∆ ∩ Z4 = {−1, 0, 1}4,

• Triangulation: barycentric,

• X∆
∼= (P1)4,

• χ(Z) = 0, Z is smooth.
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Set

Vi :={v ∈ ∆ ∩ Z4 | exactly i coord. of v are 0}

={v ∈ Int(Γ) ∩ Z4 | Γ ∈ ∆(i)}.

V0 V1 V2 V3 V4 Number of
components

+ + + + + 1
+ + + + − 2
+ + + − + 1
+ + + − − 2
+ + − + + 1
+ + − + − 1
+ + − − + 1
+ + − − − 1
+ − + + + 1
+ − + + − 2
+ − + − + 1
+ − + − − 2
+ − − + + 1
+ − − + − 1
+ − − − + 1
+ − − − − 1

− + + + + 1
− + + + − 1
− + + − + 1
− + + − − 1
− + − + + 1
− + − + − 2
− + − − + 1
− + − − − 2
− − + + + 1
− − + + − 1
− − + − + 1
− − + − − 1
− − − + + 2
− − − + − 1
− − − − + 2
− − − − − 1

Remark: All sign distributions which are constant on the Vi’s were
tested. Due to limitations of computer power, only the number of
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components could be calculated. As Z is smooth, Poincaré duality
yields that only H1 remains unknown.

Observations and final remarks

We observe that in the calculated homology groups only 2-torsion oc-
curs. This reminds much the situation for complex toric Calabi-Yau
hypersurfaces: As Batyrev and Kreuzer showed in [BatKr], of 32 cases
with p-torsion there are 29 where p = 2 (and 2 cases with p = 3, one
case with p = 5). Apart from that, there are 473 800 744 cases with no
torsion at all, so it seems that torsion in (co-)homology is more common
for real Calabi-Yau varieties than for the complex ones.

It is further interesting that in the calculated examples the num-
ber of components of the hypersurfaces already determines all homol-
ogy groups. On the other hand there is a very strong indication that
the number of components cannot exceed two (in any dimension). If
these two facts would be true in general (maybe in some weaker form
also), it would greatly decrease the dependency of (co-)homology of
the combinatorial data. As the number of components of a Viro hy-
persurface is very problematic to determine in a general combinatorial
formula (the only bounds known are implicated from the algebraic side)
it seems that the choice of a unimodular triangulation in the combinato-
rial patchworking method has some algebraic significance. It would be
an interesting question for further research of what type this connection
may be.
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Appendix A -
Zusammenfassung auf
Deutsch

Der Leitgedanke der vorliegenden Arbeit besteht darin, die Topologie
von reellen Calabi-Yau-Varietäten, insbesondere der 3-dimensionalen,
zu untersuchen.

Eine (komplexe) Calabi-Yau-Varietät wird dabei eine glatte projek-
tive komplexe algebraische Varietät X genannt, falls H i(X,OX) = 0
für alle i = 1, . . . , dimX − 1 und die kanonische Klasse KX trivial
ist (die letzte Eigenschaft ist äquivalent zu der Existenz einer global
definierten rationalen (dimX)−Form, die weder Null- noch Polstellen
besitzt). 1-dimensionale Calabi-Yau-Varietäten nennt man elliptische
Kurven, 2-dimensionale K3-Flächen. Von einer reellen Calabi-Yau-
Varietät spricht man, wenn ihre Komplexifizierung eine komplexe Calabi-
Yau-Varietät ist. Die Eigenschaft KX = 0 hat die topologische Kon-
sequenz, dass die Varietäten als reelle Mannigfaltigkeiten betrachtet
orientierbar sind.

3-dimensionale (komplexe) Calabi-Yau-Varietäten spielen eine wichtige
Rolle in der String-Theorie. Physikalische Erägungen geben zu der
Vermutung Anlass, dass die Calabi-Yau-Varietäten in Paaren (V, V ′)
auftreten, so dass die Eigenschaften von V und V ′ eng miteinander
verknüpft sind. Diese Relation, die Mirror-Symmetrie genannt wird,
konnte bis heute nicht vollständig mathematisch erklärt werden. Auf-
grund der weitreichenden Konsequenzen in der algebraischen Geome-
trie, die z.T. überprüft werden konnten, steht sie im Mittelpunkt eines
eines regen Forschungsinteresses neuerer Zeit.

Batyrev zeigte in [Bat], wie Calabi-Yau-Varietäten aus Hyperflächen
von torischen Gorenstein-Fano-Varietäten erhalten werden können. Im
Mittelpunkt der Konstruktion steht dabei ein reflexives Polytop ∆, das
sowohl die torische Varietät definert als auch als Newton-Polytop für
die Hyperfläche fungiert. Die Auflösung eventueller Singularitäten kann
durch eine unimodulare Triangulierung von ∆∗, dem dualen Polytop,
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bestimmt werden. Eine analoge Konstruktion mit ∆∗ anstelle von ∆
liefert einen guten Kandidaten für den Mirror-Partner. Diese Klasse
von Calabi-Yau-Varietäten schließt alle vorher bekannten Beispiele ein.
Da sie über R definiert, bildet sie den Ausgangspunkt unserer Betrach-
tungen.

Zunächst untersuchen wir den Desingularisierungsprozess, der sich
lokal durch eine torische Varietät, die zu einem Fächer über einem Git-
terpolytop mit unimodularer Triangulierung assoziiert ist, beschreiben
lässt. Der Versuch der topologischen Klassifikation solcher “reeller
lokaler torischer Calabi-Yau-Varietäten”, insbesondere in den Dimen-
sionen 2 und 3, weist Parallelen zu einer Arbeit von Delaunay ([Dly1]
und [Dly2]) auf, doch während dort glatte kompakte torische Varietäten
untersucht werden, derer es nur wenige gibt und die daher einzeln
abgearbeitet werden können, ist die Aufgabe in unserem Fall durch die
unendliche Vielfalt an Polytopen und Triangulierungen deutlich kom-
plexer.

Wir zeigen, dass (in allen Dimensionen) die Eulerzahl und die virtu-
ellen Betti-Zahlen unabhängig von der gewählten Triangulierung sind.
In den Dimensionen 2 und 3 gilt dies auch für die klassischen Betti-
Zahlen. Wir führen eine Kompaktifizierung mit Rand ein, deren Rand
nur vom Rand des Polytops (und dessen induzierter Triangulierung)
abhängt. Die Anzahl der der Zusammenhangskomponenten des Va-
rietätenrandes ergibt sich als Index einer durch die Punkte des Polyto-
prandes definierten Untergruppe in (Z/2Z)d−1.

Die 2-dimensionalen reellen lokalen torischen Calabi-Yau-Varietäten
X werden durch ein Intervall [0, n] und die eindeutige Unterteilung
in Teilintervalle der Länge 1 gegeben. Der Parameter n bestimmt
ihre Topologie: Für n gerade ist X ∼= Tn

2
−1\{2pkt.} für n ungerade

X ∼= Tn−1
2
\{pkt.}, wobei Tg die orientierbare Fläche vom Geschlecht g

bezeichne.
Für die 3-dimensionalen Varietäten, gegeben zu einem Gitterpoly-

top Θ, gilt H0
c (X,Z) = 0, H1

c (X,Z) ∼= Zl(IntΘ)−s, H2
c (X,Z) ∼= Zr ×

(Z/2Z)s und H3
c (X,Z) = Z, wobei l die Anzahl der Gitterpunkte beze-

ichne und r+s = l(∂Θ)−3. r und s hängen von der Triangulierung ab.
Wir vermuten, dass die Topologie schon durch die Fundamentalgruppe
eindeutig bestimmt ist.

Die Formeln für die Euler-Zahlen lassen sich verwenden, um kom-
binatorische Relationen für Gitterpolytope von gerader Dimension, die
eine unimodulare Triangulierung besitzen, aufzustellen. Für 4-dimensionale
Polytope Θ erhalten wir vol(Θ) = 2µ(Θ)− 5κ(Θ) + 9l(Θ)− 14. Dabei
bezeichne µ, κ die (eindeutig bestimmte) Anzahl der 2- bzw. 1-dimensionalen
Simplizes in einer unimodularen Triangulierung.
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Den kombinatorischen Charakter der lokalen Calabi-Yau-Varietäten
setzen wir auch auf die kompakten Varietäten fort, indem wir die Hy-
perflächen in Batyrev’s Konstruktion mit Hilfe einer Methode von Viro
erstellen. Dabei wird für das Polytop ∆ ebenfalls eine Triangulierung
gewählt, sowie eine Vorzeichenfunktion auf deren Ecken. Es erweist sich
als vorteilhaft auch hier die Triangulierung unimodular zu wählen. In
diesem Fall erhalten wir, dass für die kompakten Calabi-Yau-Varietäten
die Eulerzahl unabhängig von allen Wahlen in der Konstruktion ist.
Für eine fixierte Viro-Hyperfläche sind ferner die Betti-Zahlen von der
Wahl der Auflösung unabhängig. Letzteres spiegelt ein weiteres Ergeb-
nis von Batyrev ([Bat2]) im reellen Fall wider, der zeigte, dass birational
äquivalente komplexe Calabi-Yau-Varietäten gleiche Betti-Zahlen be-
sitzen.

Für reelle K3-Flächen ergibt sich in unserer Konstruktion immer
die Eulerzahl −16. Aufgrund der bekannten Klassifikation, läßt sich
ableiten, dass diese maximal 2 Zusammenhangskomponenten haben
können. Für beide möglichen Fälle geben wir Beispiele an.

Mit Hilfe der Formel für die Eulerzahl lassen sich ebenfalls wieder
kombinatorische Relationen für Polytope finden. Für 4-dimensionale
reflexive Polytope ∆, die eine unimodulare Triangulierung zulassen,
erhalten wir

−15f4,4 + 14f3,4 + 7f3,3 − 12f2,4 − f2,3 − 3f2,2 + f1,4 + 4f1,3 + 2f1,2 + f1,1

=
∑

F∈∆(2)

l(∂F )(2− l(F ∗))−
∑

Θ∈∆(1)

vol(Θ)(3− l(∂Θ∗)),

wobei fi,j die Anzahl der i-dimensionalen Simplizes, die im Inneren
einer j-dimensionalen Seite liegen, bezeichne.

Die natürliche Zellzerlegung der Viro-Hyperflächen lässt sich nutzen,
um deren Homologiegruppen mit beliebigen Koeffizienten zu berechnen.
Dazu implementierten wir ein Programm in Maple, das diese Aufgabe
löst. Für glatte Hyperflächen erhält man so direkt vollständige Informa-
tionen über die Homologie von Calabi-Yau-Varietäten. Leider erfordern
gerade die glatten Fälle einen hohen Aufwand an Rechenzeit und Spe-
icherkapazität, so dass in Dimension 3 nur die Anzahl der Zusammen-
hangskomponenten bestimmt werden konnte. Die durchgeführten Ex-
perimente an glatte und nicht glatte Hyperflächen legen die Vermu-
tung nahe, dass (bei unimodularer Triangulierung) in jeder Dimension
maximal 2 Zusammenhangskomponenten auftreten können. In Dimen-
sion 3 trat zudem nur 2-Torsion auf. Dies spiegelt ebenfalls wieder
eine ähnliche Situation für komplexe Calabi-Yau-Hyperflächen wider:
In [BatKr] zeigen Batyrev und Kreuzer, dass p-Torsion einerseits sehr
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selten auftritt, nämlich in 32 von 473 800 776 Fällen, andererseits 29
Fällen p = 2, in 2 Fällen p = 3 und in einem Fall p = 5.
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Universität Tübingen bei Prof. Batyrev
04/2003-09/2009 Fortsetzung des Promotionsstudiums an der Georg-August-

Universität Göttingen. Betreuer: Prof. Tschinkel (Göttingen)
Prof. Batyrev (Tübingen)
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